

*	Federal Ministry of Research, Technology and Space
---	--

Grid Nesting and Limited Area Mode

Daniel Reinert, Günther Zängl, Florian Prill

Deutscher Wetterdienst, Offenbach

DWD Academic ICON Course 2025, July 21-25, Hamburg

Outline

Grid nesting in ICON

- Basic concept
- Technical implementation
- Application examples
 - Idealized baroclinic wave with nests
 - Operational NWP application

Limited Area Mode (LAM)

- Necessary input data
- Boundary nudging
- Pros and Cons compared to nesting

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

6

Why is Nesting or LAM still a Desirable Feature?

- Nowadays convection permitting simulations at global scale are technically feasible.
- > ... but still impractical to do on a daily basis.
- > Challenges: time to solution, data processing, ...

- A global model which is capable of running at high resolution only in selected regions is still desirable.
- Possible techniques:
 - Grid refinement/nesting
 - Limited area mode

© Daniel Klocke, MPI-M

DWD

Grid Nesting and Limited Area Mode

Grid Refinement Techniques in Atm. Models

Deutscher Wetterdienst Wetter und Klima aus einer Hand DWD

6

Grid Nesting in ICON – Basic Concept

Nested setup with 3 domains (3 distinct grid files)

> fixed refinement ratio of 2!

time step for the child domain gets multiplied by 0.5 automatically

dtime (run_nml)

- one-way and two-way nesting is possible
 - one-way: parent domain 'does not know' about existence of child domain
 - two-way: parent domain gets feedback from child domain

lfeedback (grid_nml)

How to Activate One or More Nested Domains

General Structure of a Nested Domain

DWD

A nested domain is split into **3 zones**, in order to accomplish the parent-child coupling:

- the boundary interpolation zone (orange)
- the nudging zone (ocher)
- the feedback zone (blue)

Boundary Interpolation Zone

- establishes parent-to-child coupling
- receives interpolated boundary conditions from the parent domain at every parent time step, to solve the governing equations in the child domain.
- fixed width of 4 cell rows

- damps differences between the driving solution in the boundary interpolation zone and the prognostic solution in the domain interior.
- > only active for one-way nesting or LAM

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- establishes the child-to-parent coupling (feedback)
- child solution is fed back to the parent domain at every (parent) time step.
- > relaxation-type feedback with adjustable timescale rather than direct feedback.
- feedback of atm. variables only: VN, W, THETA_V, DEN, QV, QC, QI

Additional Features

DWD

- multiple nesting (telescoping)
- mixing of one-way and two-way nested domains

lfeedback (grid_nml)

 nests may be switched on or off during runtime (lazy initialization mode)

```
start_time (grid_nml)
end_time
```


vertical nesting

- nested domains may have lower top heights
- vertical refinement in the child domain is not implemented

```
lvert_nest (run_nml)
num_lev
```


Technical Limitations and Caveats

 domains of the same nesting level must not overlap (the grid generator takes care of it)

 telescoping: the child domain must be smaller than the parent domain (by 4 cell rows at least)

 child cell circumcenters do not necessarily coincide with parent cell circumcenters (grid optimization)

Connectivity Information

A child grid (file) contains connectivity information about its parent grid, but not the other way around!

- > This allows to
 - a posteriori create new child grids for existing grids
 - do model runs using either all, none, or a subset of available child grids.
- There exists no parent-child connectivity information in the vertical.
 - it is implicitly assumed that vertical cell interface heights match exactly between parent and child grids.
 Approximation!!

Daniel Reinert (DWD)

• no vertical remapping during child-to-parent feedback

Flexible child domain selection

In complex terrain, vertical level heights differ (slightly) between parent and child

DWD

Grid Nesting and Limited Area Mode

Example: Idealized Baroclinic Wave Test

DWD

We have used this test in the past in order to:

- validate the functionality of the grid nesting
- investigate numerical artefacts related to the resolution jump along nest boundaries

Idealized Baroclinic Wave Test with Nests

Idealized Baroclinic Wave Test with Nests

DWD

Smooth transition between parent and child solutions. No significant accumulation of noise along nest boundaries.

DWD

Does a two-way nest over Europe have a beneficial impact on global forecast quality?

	global	nest
hor. resolution	40 km	20 km
levels	90	60
top height	75 km	23 km
lead time	180 h	120 h

Setup:

- Date: 01-31 Jan 2021 one run per day over 180h starting at 00UTC
- Initial conditions: IFS analysis
- Physics: operational DWD settings

3 experiments

- Global with nest: R2B6N7 (40/20km)
- Global low-res: R2B6 (40km)
- Global high-res: R2B7 (20km)

Does Nesting Induce Boundary Artifacts?

- smooth transition between parent and child solutions
- > no significant accumulation of noise

Verification against IFS Analysis for Europe

DWD

Note that we are exclusively comparing **results for the global domain**.

- For lead times < 72 h the improvement due to the nest feedback in R2B6N7 is comparable to that of the global high resolution R2B7 run.
- For lead times > 72 h the improvement in R2B6N7 decreases as the coarse R2B6 boundary data become more and more relevant for the nested domain.

Verification against Synop Stations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Europe: beneficial nest impact for lead times < 120h</p>
- > Asia: downstream propagation of improvements with a delay of \approx 72h

Verification against Radiosonde Ascends

DWD

Beneficial nest impact extends throughout the troposphere (and downstream).

Summary (nesting)

- one-way and two-way hor. nesting with one or more domains per nesting level available in ICON
- refinement ratio fixed to a value of 2
- > vertical nesting: child domains may have lower top heights
- > Full-physics NWP experiments with a nested domain over Europe confirmed that
 - numerical disturbances along nest boundaries are sufficiently small
 - nest feedback has a significant beneficial impact on the forecast quality of the global domain
 - beneficial impact is also observable downstream of the nest location

Zängl, G., Reinert, D., Prill, F. (2022): *Grid Refinement in ICON v2.6.4*. Geosci. Model Dev. , **15**, 7153-7176 https://doi.org/10.5194/gmd-15-7153-2022

DWD

Grid Nesting and Limited Area Mode

Limited Area Mode (LAM)

56N

- Allows the ICON model to be run for an arbitrary section \geq of the earth rather than for the full earth.
- LAM and ICON-global share the same code base. \geq
- LAM is no separate model, it is just a specific \geq configuration!
- Switching to LAM 'in principle' requires only the activation \geq of the main switch

```
l_limited_area=.TRUE. (grid_nml)
```

Of course some other adaptions to the namelist settings (tunings) may be necessary as well.

Operational ICON-D2 (2.2km) limited area domain

Daniel Reinert (DWD)

27

boundary interpolation zone

- likewise it has a boundary interpolation zone and nudging zone
- the only notable difference: boundary data are read from file at regular intervals instead of being interpolated every time step from a parent domain.

LAM: a by-product of the nesting implementation

nudging zone

only one-way

DWD

domain interior

Necessary input data

LAM has one additional input channel for \geq boundary data compared to ICON-global

Boundary data

- can be read asynchronously (recommended) \geq num prefetch proc = 1 (parallel nml)
- may be provided on the full LAM grid, or an auxiliary boundary grid (see Figure)
- are required for the following (prognostic) variables:

see also talk by Daniel Rieger

DWD

see also talk by Daniel Rieger

- based on a decision tree
- several variable sets are supported
- hence, several driving models are supported (e.g. ICON, COSMO, IFS, ...)

J _{CON} Tutor p.4	rial ⁹ S	upporte	d va	riab	le s	ets		
Set I (e.g	. ICON)							
$\left\{ egin{array}{c} U,V\\ \mathrm{or}\\ VN \end{array} ight\},$	W,	THETA_V,	DEN,	QV,	QC,	QI,	QR,	QS

Decision tree for boundary data read-in

Boundary Nudging

Deutscher Wetterdienst

- > sponge layer, in which the interior flow is relaxed towards externally specified boundary data.
- > prevents spurious reflection of outward propagating waves
- no spectral nudging! height z Limited area domain Z_{top} = top_height sponge laver with Rayleigh damping intermediate prog. solution of vertical v damp height external boundary data 3 upper boundary nudging zone Z_{start} = nudge start height $\psi(t) = \psi^*(t) + \alpha_{\text{nudge}} \left[\psi_{\text{bc}}(t) - \psi^*(t) \right]$ d 0 m a i n 0 L \bigcirc (0)(1)(4)(1) $=\delta\psi$ Davies (1976) lateral lateral boundary boundary nudging coefficient nterpolation nudging zone zone horizontal r $r_0 + L$ r_n **Tutoria** Sec. 6.2 grf bdywidth c = 4 cell rows L = nudge zone width = 8 cell rows

LAM vs. Nesting: pros and cons I

When to use LAM ?

LAM:

- greater flexibility with regard to horizontal resolution
 - horizontal resolution can be chosen `freely`
 - fixed refinement ratio of 2 does not apply to LAM

greater flexibility with regard to vertical resolution

- number and distribution of vertical layers can be chosen `freely`,
 i.e. no need to match with vertical layers of the driving model
- ICON has built-in vertical interpolation scheme for initial and boundary conditions
- boundary data may be taken from various 'driving' models such as ICON, COSMO or IFS
- + cheaper compared to global+nest, especially if combined with data assimilation.

LAM:

- less frequent lateral boundary updates compared to 1-way nesting (e.g. only every 1h rather than every timestep)
- LAM is technically a little bit more involved in terms of input data preparation:
 - requires an additional pre-processing step (horizontal interpolation with e.g. CDO), in order to generate the boundary data files.
- potential ill-posedness of lateral boundary conditions (Davies, 2014)
- possible inconsistencies with the driving model (governing equations, numerical formulations, physical parameterizations)
- lack of regional- to global-scale interactions

Summary (LAM)

- Limited Area Mode (LAM) is a by-product of the grid nesting implementation
- same code base, same binary as ICON-global
- technically it works like a one-way nested domain (except for boundary forcing)
- provides greater flexibility regarding horizontal and vertical resolution compared to one-way nested domains.
- despite deficiencies from a mathematical/theoretical perspective, it has proven successful in various NWP and climate applications.
- used operationally at DWD for convection-permitting NWP over central Europe (ICON-D2, ICON-D05).

DWD

Thank you for your attention

Daniel Reinert Research and Development daniel.reinert@dwd.de

Ullrich et al. (2017): *DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models*. Geosci. Model Dev., **10**, 4477-4509

Gettelman et al. (2018): *Regional Climate Simulations with the Community Earth System Model*. J. Adv. Model Earth Sy., **10**, 1245-1265

Bindle et al. (2021): *Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model.* Geosci. Model Dev., **14**, 5977-5997

Gao et al. (2019): *Improving AGCM Hurricane Structure with two-way Nesting*. J. Adv. Model Earth Sy., **11**, 278-292

Zängl et al. (2022): *Grid Refinement in ICON v2.6.4*. Geosci. Model Dev., , **15**, 7153-7176 <u>https://doi.org/10.5194/gmd-15-7153-2022</u>

Davies, T. (2014): Lateral boundary conditions for limited area models, Q. J. Roy. Meteor. Soc., **140**, 185-196, <u>https://doi.org/10.1002/qj.2127</u>

Warner, T. T., Peterson, R. A., and Treadon, R. E. (1997): A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction, B. Am. Meteorol. Soc., 78, 2599–2618

Additional Features

DWD

Limited Area Mode (LAM)

may be regarded as a **by-product** of the nesting implementation (will be discussed later in this talk)

