
MANYWAYS TO GPUS
GPU INTRODUCTION
13 October 2022 Andreas Herten, Kaveh Haghighi-Mood Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
GPU Architecture

Empirical Motivation
Comparisons
GPU Architecture
Summary

Programming GPUs
Libraries
Directives
CUDA C/C++
Performance Analysis

Conclusion
References

Image references are collected in
References section at end of slides
Title image: Debiève [1]

Member of the Helmholtz Association 13 October 2022 Slide 1 39

GPU Architecture

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016 2018 2020

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

MI100

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060
Tesla

 C
2050 Tesla

 M
2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100 Tesla
 V

100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Performance, Double Precision

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 13 October 2022 Slide 3 39

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016 2018 2020

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970 HD 7970 G
Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

MI25

MI60 MI100

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4
Platin

um 8180
Platin

um 9282

Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Memory Bandwidth Comparison

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 13 October 2022 Slide 3 39

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 13 October 2022 Slide 4 39

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 13 October 2022 Slide 4 39

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 13 October 2022 Slide 5 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s
DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[6
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[6
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Multiprocessor

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[6
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 13 October 2022 Slide 7 39

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 13 October 2022 Slide 8 39

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 13 October 2022 Slide 8 39

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 13 October 2022 Slide 8 39

AMD Instinct MI250
One GPUwith Two Chiplets

Member of the Helmholtz Association 13 October 2022 Slide 9 39

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 13 October 2022 Slide 10 39

Programming GPUs

State of the GPU
C* C/C++

Full vendor support

Vendor support, but not (yet) entirely comprehensive
Indirect, but comprehensive support, by vendor

Comprehensive support, but not by vendor

Limited, probably indirect support – but at least some

No direct support available, but of course one could
ISO-C-bind your way through it or directly link the libraries

CUDA HIP SYCL OpenACC OpenMP
C* F C* F C* F C* F C* F

NVIDIA 1 2 3 4 5 6 7 8 9 10

AMD 11 12 13 4 14 6 15 / 16 17 17

Intel 18 19 20 4 21 6 22 22 24 24

Standard Kokkos ALPAKA
C* F C* F C* F Python

NVIDIA 25 26 27 28 29 30 31

AMD 32 32 33 28 34 30 35

Intel 36 37 38 28 39 30 40

Member of the Helmholtz Association 13 October 2022 Slide 12 39

State of the GPU: Footnotes I
1: CUDA C/C++, supported through CUDA Toolkit
2: CUDA Fortran, proprietary Fortran extension supported by NVIDIA HPC SDK
3: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD
4: No such thing like HIP for Fortran
5: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL
6: No such thing like SYCL for Fortran
7: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC C compiler and Clacc
8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC Fortran compiler and Flacc
9: OpenMP in C supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by GCC,
and Clang
10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by
GCC, and Flang
25: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK

Member of the Helmholtz Association 13 October 2022 Slide 13 39

https://github.com/codeplaysoftware/sycl-for-cuda/blob/cuda/sycl/doc/GetStartedWithSYCLCompiler.md#build-sycl-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/illuhad/hipSYCL
https://ieeexplore.ieee.org/document/9651310

State of the GPU: Footnotes II

26: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK

27: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process

28: Kokkos is a C++ model, but at least the authors provided an ISO C Binding example for Fortran

29: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process

30: Alpaka is a C++ model

31: There is a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, andmany others;
NVIDIA actively supports a lot of them, but has no direct product like CUDA for Python; so, the status is somewhere in
between

11: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs

12: AMD offers a Source-to-Source translator to convert some CUDA Fortran functionality to OpenMP for AMD GPUs
(gpufort); in addition, there are ROCm library bindings for Fortran in hipfort OpenACC/CUDA Fortran Source-to-Source
translator gpufort: https://github.com/ROCmSoftwarePlatform/gpufort

13: HIP is the preferred native programmingmodel for AMD GPUs

14: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD

Member of the Helmholtz Association 13 October 2022 Slide 14 39

https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd

State of the GPU: Footnotes III
15: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel’s OpenACC to OpenMP Source-to-Source
translator can be used to generate OpenMP directives from OpenACC directives
16: OpenACC Fortran can be used on AMD GPUs via GCC; also, AMD’s gpufort Source-to-Source translator canmove
OpenACC Fortran code to OpenMP Fortran code, and also Intel’s translator can work
17: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang)
and Fortran (Flang, example)
32: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs
33: Kokkos supports AMD GPUs through HIP
34: Alpaka supports AMD GPUs through HIP
35: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party
support is avaialble, for example through Numba or a HIP version of CuPy
18: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel’s DPC++ Compatability Tool
can transform CUDA to SYCL
19: No direct support, only via ISO C bindings, but at least an example can be found on GitHub; it’s pretty scarce and not by
Intel itself, though
20: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel’s Level Zero, making it run on Intel GPUs

Member of the Helmholtz Association 13 October 2022 Slide 15 39

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp/tree/aomp-dev/examples/fortran/simple_offload
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://docs.cupy.dev/en/latest/install.html?highlight=rocm#building-cupy-for-rocm-from-source
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chip-spv

State of the GPU: Footnotes IV

21: SYCL is the prime programmingmodel for Intel GPUs; actually, SYCL is only a standard, while Intel’s implementation of
it is called DPC++ (Data Parallel C++), which extends the SYCL standard in places

22: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel’s Source-to-Source translator

24: Intel has extensive support for OpenMP through their latest compilers

36: Currently, no (known) way to launch Standard-based parallel algorithms on Intel GPUs

37: With Intel oneAPI 2022.3, Intel supports DO CONCURRENT with GPU offloading

38: Kokkos supports Intel GPUs through SYCL

39: Alpaka v0.9.0 introduces experimental SYCL support

40: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy

Member of the Helmholtz Association 13 October 2022 Slide 16 39

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://intelpython.github.io/dpnp/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 13 October 2022 Slide 17 39

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 13 October 2022 Slide 17 39

Programming GPUs
Libraries

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 13 October 2022 Slide 19 39

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 13 October 2022 Slide 19 39

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 13 October 2022 Slide 19 39

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 13 October 2022 Slide 19 39

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 13 October 2022 Slide 19 39

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 13 October 2022 Slide 20 39

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 13 October 2022 Slide 21 39

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 13 October 2022 Slide 22 39

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 13 October 2022 Slide 24 39

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 13 October 2022 Slide 24 39

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 13 October 2022 Slide 24 39

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 13 October 2022 Slide 25 39

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 13 October 2022 Slide 25 39

Programming GPUs
CUDA C/C++

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 13 October 2022 Slide 27 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 13 October 2022 Slide 28 39

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 13 October 2022 Slide 29 39

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Member of the Helmholtz Association 13 October 2022 Slide 30 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 13 October 2022 Slide 31 39

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 13 October 2022 Slide 32 39

Programming GPUs
Performance Analysis

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

compute-sanitizer Check memory accesses, race conditions, …
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler
AMD
rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

Member of the Helmholtz Association 13 October 2022 Slide 34 39

Nsight Systems
CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu

0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red

Member of the Helmholtz Association 13 October 2022 Slide 35 39

Nsight Systems
GUI

Member of the Helmholtz Association 13 October 2022 Slide 36 39

Nsight Compute
GUI

Conclusion

Conclusion, Resources

GPUs provide highly-parallel computing power
Many ways to use them
Libraries Best performance, but need to map
Directives Easy to use, but needs to fit

Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39 39

Conclusion, Resources

GPUs provide highly-parallel computing power
Many ways to use them
Libraries Best performance, but need to map
Directives Easy to use, but needs to fit

Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39 39

Conclusion, Resources

GPUs provide highly-parallel computing power
Many ways to use them
Libraries Best performance, but need to map
Directives Easy to use, but needs to fit

Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39 39

Conclusion, Resources

GPUs provide highly-parallel computing power
Many ways to use them
Libraries Best performance, but need to map
Directives Easy to use, but needs to fit

Native Most performance, but sometimes a little hard

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 13 October 2022 Slide 39 39

mailto:a.herten@fz-juelich.de

Appendix

Appendix
Glossary
References

Member of the Helmholtz Association 13 October 2022 Slide 2 8

Glossary I

AMD Manufacturer of CPUs and GPUs. 54, 55, 56, 57, 58, 59, 92, 93
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 54, 55, 56, 57, 58, 59

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 93

HIP GPU programmingmodel by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
54, 55, 56, 57, 58, 59

NVIDIA US technology company creating GPUs. 22, 23, 24, 54, 55, 56, 57, 58, 59, 81, 92

Member of the Helmholtz Association 13 October 2022 Slide 3 8

Glossary II
OpenACC Directive-based programming, primarily for many-core machines. 48, 49, 50, 51,

52
OpenCL The Open Computing Language. Framework for writing code for heterogeneous

architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 54, 55, 56, 57, 58,
59

OpenMP Directive-based programming, primarily for multi-threadedmachines. 48, 49,
50, 51, 52

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 54, 55, 56, 57, 58, 59

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 69, 70

Member of the Helmholtz Association 13 October 2022 Slide 4 8

Glossary III

CPU Central Processing Unit. 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 54, 55, 56, 57,
58, 59, 92, 93

GPU Graphics Processing Unit. 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 30, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59,
70, 80, 81, 86, 87, 88, 89, 92, 93

SIMD Single Instruction, Multiple Data. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
SIMT Single Instruction, Multiple Threads. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24
SM Streaming Multiprocessor. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

SMT Simultaneous Multithreading. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Member of the Helmholtz Association 13 October 2022 Slide 5 8

References: Images, Graphics I

[1] Alexandre Debiève. Title Graphic: Bowels of computer. Freely available at Unsplash. URL:
https://unsplash.com/photos/FO7JIlwjOtU (page 2).

[2] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 4, 5).

[3] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 6, 7).

[4] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 6, 7).

Member of the Helmholtz Association 13 October 2022 Slide 6 8

https://unsplash.com/photos/FO7JIlwjOtU
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

References: Images, Graphics II
[5] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:

https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

[6] Nvidia Corporation. Pictures: Ampere GPU. Nvidia Devblogs: NVIDIA Ampere Architecture
In-Depth. URL:
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
(pages 22–24).

[7] Nvidia Corporation. Pictures: Hopper GPU. Nvidia Developer Technical Blog: NVIDIA
Hopper Architecture In-Depth. URL: https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

[8] AMD. Pictures: MI250 GPU. AMD CDNA2 Architecture Whitepaper. URL: https:
//www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf.

Member of the Helmholtz Association 13 October 2022 Slide 7 8

https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf

References: Images, Graphics III

[9] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 39–43).

Member of the Helmholtz Association 13 October 2022 Slide 8 8

https://thenounproject.com/wes13/collection/its-a-wizards-world/

	Outline
	*gpu Architecture
	Empirical Motivation
	Comparisons
	GPU Architecture
	Summary

	Programming GPUs
	Libraries
	Directives
	CUDA C/C++
	Performance Analysis

	Conclusion
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References

