MANY WAYS TO GPUS
GPU INTRODUCTION

13 October 2022 | Andreas Herten, Kaveh Haghighi-Mood | Forschungszentrum Jiilich

g JULICH | 5 upome

Forschungszentrum CENTRE

Member of the Helmholtz Association

Outline

GPU Architecture
Empirical Motivation
Comparisons
GPU Architecture
Summary

Programming GPUs
Libraries
Directives
CUDA C/C++
Performance Analysis

Conclusion

References

Member of the Helmholtz Association

Image references are collected in
References section at end of slides
Title image: Debiéve [1]

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
13 October 2022 Slide 1139 J Forschungszentrum

GPU Architecture

Status Quo Across Architectures

Performance

Theoretical Peak Performance, Double Precision

o .
3. 3 :
g108 ey gD s Oy o B 7420 (KNG T N
e}
3
T
(0]
INTEL Xeon CPUs ——
® . . NVIDIA Tesla GPUs —Jill—
102 - - - i T T < R R =
. . . AMD Radeon GPUs —@)—
5 . . i
o) S : : : : INTEL Xeon Phis —WF—
< o &
¥ + W ; ; ; ; ‘)
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 13 October 2022 Slide 3139

Status Quo Across Architectures
Memory Bandwidth

Theoretical Peak Memory Bandwidth Comparison

Xeon Phi 7
H S o Tesa kBT B :
o) < :
3 .
102 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
)
INTEL Xeon CPUs ——
NVIDIA Tesla GPUs — il —
) S of .
0 &> Ga o . . .
@@'L 55‘55% W ¥ 3 * ! ‘ 3 AMD Radeon GPUs —@—
: : : : : INTEL Xeon Phis ——
10! L L L L L L L
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 13 October 2022 Slide 3139

CPU vs. GPU

A matter of specialties

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 4139 Forschungszentvum CENTRE

CPU vs. GPU

A matter of specialties

Transporting one Transporting many

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 4139 Forschungszentvum CENTRE

CPU vs. GPU

Chip

ALU

Control

Cache

13 October 2022

Member of the Helmholtz Association

Slide 5139

DRAM

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum | CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 13 October 2022 Slide 6139

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 13 October 2022 Slide 6139

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually

Host

- o -

Il

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 6139

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

O

Member of the Helmholtz Association 13 October 2022 Slide 6139

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

Copy

O

V100 Al100
32 GB RAM, 900 GB/s

Member of the Helmholtz Association 13 October 2022 Slide 6139

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory

= GPU has small (40 GB), but high-speed memory 1555 GB/s

= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually

= Two engines: Overlap compute and copy

Copy

= SIMT

V100
32 GB RAM, 900 GB/s

o OO 1T OO Ee)

Member of the Helmholtz Association 13 October 2022

Slide 6139

Al100

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

SIMT

Scalar
SIMT = SIMD & SMT
A + B = |G
A + [B1] = [a
Al + B2 = |G
L] CPU: A3+ B3 = |G
= Single Instruction, Multiple Data (SIMD)
‘J JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay By C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay By C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao Bo Co
A By ¢
+ -
Ay B, C
L] CPU: As B3 C3

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

SMT

Thread

Core
Thread

=

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Furschungszentvum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By G
. -
Ay By C,
= CPU: 4 B &
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
] JULICH
Member of the Helmholtz Association 13 October 2022 Slide 7139 ‘J :!rgunLgslzgrt! gléz_ErF;(éOMPUT\NG

SIMT

Vector
SIMT = SIMD ¢ SMT - . C
Ay By Ci
N -
Ay B, C
L] CPU: As B3 C3
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
SIMT

i

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Furschungszentrum CENTRE

SIMT

SIMT = SIMD © SMT

= CPU:
= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)
= GPU: Single Instruction, Multiple Threads (SIMT)
= CPU core = GPU multiprocessor (SM)
= Working unit: set of threads (32, a warp)
= Fast switching of threads (large register file)

» Branching ifC*

Member of the Helmholtz Association 13 October 2022 Slide 7139

Vector
Ao Bo Co
A B (o)
+ -

Ay By C,
As B3 C3
SMT

Thread

Core

Thread
SIMT

i

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

SI M T Vector

SIMT = SIMD & SMT
Ao Bo @
PGl Expiess 40 Hostintstace
A By G
+ =
% = A By G
" As B3 G

1

Thread

Core
Thread

SIMT

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD & SMT
Ao Bo Co
g A B @
+ -
%a Ay By G
] B As B3 Cs

1

Thread

Core
Thread

SIMT

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 7139 Forschungszentrum CENTRE

Multiprocessor

SIMT

Vector

SIMT — SIMD & SMT
Ay Bo Co
[rp—— [rp———
Dispatch Unit (32 threadiclk) Dispatch Unit (32 thread/clk) Ay By C1
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) + =
A By G
it R i PR
il i R A3 B3 &

wrszwrsz Fpa Fesd nvsz raz P ppsd
wrsznraz PPz Fpad nrszinraz FPOERad ress

TENSOR CORE TENSOR CORE
wrsz wraz PPz Fpag wrsz rsz P2 FPsd

sz sz PPz Frsg sz sz FPad Fpag

sz sz PPz FesZ sz sz FPad Fpad

Thread

Core
Thread

sz sz PPz Fesg nrsz rsa PP g

SR || WS

Dispatch Urit (32 threadicik) Dispatch Urit (32 thrsadlclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

wrsarad FRSIRRS rese rszrsd FPRIRRR reos

jrsarsz FPsdEesd reos nrszrsz FPsd RS reos

rsznraz PPz Fpad nrszraz FPS RS reos S IMT

sz sz e s rsarsz Fesdeesd reos
TENSOR CORE TENSOR CORE

sz sz oz Fesd rsarsz FesdEad reos

sz sz s Fesd rsarse FBSd RS Fess
sz sz s Fesd rszrsz PP Fesd
wrsz wrse PP Fesd wvsa raz PP FPsd

Forschungszentrum CENTRE

g JULICH | 5 upome

Member of the Helmholtz Association 13 October 2022 Slide 7139

A100vs H100

Comparison of current vs. next generation

A100

¢
¢
(
o
<
¢
¢
d

W

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 8139 Forschungszentrum CENTRE

A100vs H100

Comparison of current vs. next generation

A100

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 8139 Forschungszentvum CENTRE

A100vs H100

Comparison of current vs. next generation

Lonstucion cacne
WarpSchaduler 32 s
[rrr—

TENSOR CORE

TENSOR CORE

wrsawn o s 8

V2K L1 Dat Cach Shared Hamory

Member of the Helmholtz Association 13 October 2022

TENSOR CORE
4" GENERATION

TENSOR CORE
" GENERATION

‘Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory.

JULICH | srcrconrumne

Slide 8139 Forschungszentrum | CENTRE

AMD Instinct MI250

One GPU with Two Chiplets

§ Mermory by o &= Memory .] H Memory . &= &= Memary oy
|] |
} 11 JHL 11 :

H P 1Rl 11

i i LIBLY i 1
1 i !i ;* i ig
11 1L 11]
i i i i i H H H
! i] i
i
[— = = pr— H H — = = - H

INFINITY G FABRIC

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 9139 Forschungszentvum CENTRE

CPU vs. GPU

Let’s summarize this!

/

Core™ i

Optimized for low latency

+

+
+
+
+

Large main memory

Fast clock rate

Large caches

Branch prediction

Powerful ALU

Relatively low memory bandwidth
Cache misses costly

Low performance per watt

Member of the Helmholtz Association 13 October 2022

Optimized for hlgh throughput

High bandwidth main memory
Latency tolerant (parallelism)
More compute resources

High performance per watt

— Limited memory capacity

— Low per-thread performance
— Extension card

+ o+

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 10139 J Forschungszentrum

Programming GPUs

State of the GPU

C* C/C++

Full vendor support

Vendor support, but not (yet) entirely comprehensive
Indirect, but comprehensive support, by vendor

CUDA
c* F
NVIDIA 1 2
AMD 11 12
Intel 18 /19
Standard
c* F
NVIDIA 25 26
AMD VL
Intel /36 37

Member of the Helmholtz Association

HIP

c* F
3 4
13 4

20 4

Kokkos
c* F

27 28
33 28
38 28

SYCL
c* F
5 6
4 6
21 6
ALPAKA
c* F
29 /30
4 30
39 30

13 October 2022

Comprehensive support, but not by vendor

Limited, probably indirect support - but at least some

/" No direct support available, but of course one could
1SO-C-bind your way through it or directly link the libraries

OpenACC OpenMP
c F c F
7 8 9 10
15 / 16 17 17
22 22 24 24
Python
31
35
40
. .
‘ JULICH JOLICH
SUPERCOMPUTING
Slide 12139 Forschungszentrum | CENTRE

State of the GPU: Footnotes |

1: CUDA C/C++, supported through CUDA Toolkit
2: CUDA Fortran, proprietary Fortran extension supported by NVIDIA HPC SDK
3: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD
® 4: No such thing like HIP for Fortran
5: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL
6: No such thing like SYCL for Fortran
7

: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC C compiler and Clacc

B 8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC Fortran compiler and Flacc

B 9: OpenMP in C supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by GCC,
and Clang

B 10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by
GCC, and Flang

m 25: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 13139

https://github.com/codeplaysoftware/sycl-for-cuda/blob/cuda/sycl/doc/GetStartedWithSYCLCompiler.md#build-sycl-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/illuhad/hipSYCL
https://ieeexplore.ieee.org/document/9651310

State of the GPU: Footnotes Il

® 26: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK

m 27: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process

m 28: Kokkos is a C++ model, but at least the authors provided an ISO C Binding example for Fortran
B 29: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process

B 30: Alpaka is a C++ model

m 31: There is a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, and many others;
NVIDIA actively supports a lot of them, but has no direct product like CUDA for Python; so, the status is somewhere in
between

B 11: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs

® 12: AMD offers a Source-to-Source translator to convert some CUDA Fortran functionality to OpenMP for AMD GPUs
(gpufort); in addition, there are ROCm library bindings for Fortran in hipfort OpenACC/CUDA Fortran Source-to-Source
translator gpufort: https://github.com/ROCmSoftwarePlatform/gpufort

B 13: HIP is the preferred native programming model for AMD GPUs
B 14: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 14139

https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd

State of the GPU: Footnotes IlI

B 15: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel’s OpenACC to OpenMP Source-to-Source
translator can be used to generate OpenMP directives from OpenACC directives

B 16: OpenACC Fortran can be used on AMD GPUs via GCC; also, AMD’s gpufort Source-to-Source translator can move
OpenACC Fortran code to OpenMP Fortran code, and also Intel’s translator can work

m 17: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang)
and Fortran (Flang, example)

B 32: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs
® 33: Kokkos supports AMD GPUs through HIP
B 34: Alpaka supports AMD GPUs through HIP

m 35: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party
support is avaialble, for example through Numba or a HIP version of CuPy

® 18: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel’s DPC++ Compatability Tool
can transform CUDA to SYCL

® 19: No direct support, only via ISO C bindings, but at least an example can be found on GitHuby; it’s pretty scarce and not by
Intel itself, though

B 20: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel’s Level Zero, making it run on Intel GPUs

g JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 13 October 2022 Slide 15139

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp/tree/aomp-dev/examples/fortran/simple_offload
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://docs.cupy.dev/en/latest/install.html?highlight=rocm#building-cupy-for-rocm-from-source
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chip-spv

State of the GPU: Footnotes IV

m 21: SYCL is the prime programming model for Intel GPUs; actually, SYCL is only a standard, while Intel’s implementation of
itis called DPC++ (Data Parallel C++), which extends the SYCL standard in places

B 22: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel’s Source-to-Source translator
B 24: Intel has extensive support for OpenMP through their latest compilers

m 36: Currently, no (known) way to launch Standard-based parallel algorithms on Intel GPUs

m 37: With Intel oneAPI 2022.3, Intel supports DO CONCURRENT with GPU offloading

® 38: Kokkos supports Intel GPUs through SYCL

B 39: Alpaka v0.9.0 introduces experimental SYCL support

B 40: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 16139

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://intelpython.github.io/dpnp/

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 17139 J Forschungszentrum

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 17139 J Forschungszentrum

Programming GPUs
Libraries

Libraries _ _
Programming GPUs is easy:

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 19139 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 19139 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 19139 Forschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

CuBLAS

cuDNN

{A} ArRRAYFIRE

Numba
CuFFT . L3
- WY g cuPy
CcuRAND .
CUDA Math
@) JULICH| 5
SUPERCOMPUTING

Member of the Helmholtz Association 13 October 2022 Slide 19139 Forschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

cuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

- 2 At
CUDA Math 4

CuRAND

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 19139 Furschungszentrum CENTRE

CuBLAS

Parallel algebra

= GPU-parallel BLAS (all 152 routines)

= Single, double, complex data types

= Constant competition with Intel’s MKL
= Multi-GPU support

— https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 13 October 2022 Slide 20139

ﬁ

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

CuBLAS

Code example

int a = 42; int n = 10;
float x[n], yI[nI;
// Fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float = d_x, * d_y;

cudaMallocManaged(&d_x, n * sizeof(x[0]1));
cudaMallocManaged(&d_y, n = sizeof(y[0]));
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);
cublasSaxpy(n, a, d_x, 1, d_y, 1);
cublasGetVector(n, sizeof(y[0]), d_y, 1, v, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 13 October 2022 Slide 21139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CuBLAS

Code example

int a = 42; int n = 10;
float x[n], y[nl;

// fill x, y

cublasHandle_t handle; P
cublasCreate(&handle);
float = d_x, * d_y;

cudaMallocManaged(&6d_x, n * sizeof(x[0]));e— Allocate GPU memory

cudaMallocManaged(sd_y, n * sizeof(y[0]));

cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);e— Copy data to GPU

cublasSetVector(n, sizeof(y[0]), vy, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);0— Call BLAS routine
Copy result to host

cudaFree(d_x); cudaFree(d_y); Finalize

cublasDestroy(handle);eo—— ‘ .
J JULICH

Forschungszentrum

cublasGetVector(n, sizeof(y[0]), d_y, 1, vy, 1);

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 13 October 2022 Slide 22139

Programming GPUs
Directives

GPU Programming with Directives

Keepin’ you portable
= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

Member of the Helmholtz Association 13 October 2022 Slide 24139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenACC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 24139 J

Forschungszentrum

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenACC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

Pro Con
= Portability = Only few compilers
= Other compiler? No problem! To it, it’s a = Not all the raw power available
serial program = Alittle harder to debug
= Different target architectures from same

code
= Easy to program

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 24139 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {

#pragma acc kernels
for (int i = 0; 1 < n; i++)
y[il = a » x[i] + y[i];
}

float a = 42;

int n = 10;

float x[n], y[nl;
// fill x, y

saxpy_acc(n, a, X, y);

Member of the Helmholtz Association 13 October 2022

Slide 25139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {

#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop

for (int i = 0; 1 < n; i++)
y[i] = a = x[i] + y[il;
}

float a = 42;

int n = 10;

float x[nl, yI[nl;
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 13 October 2022

Slide 25139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Programming GPUs
CUDA C/C++

Programming GPUs Directly

Finally...

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 27139 Furschungszentrum CENTRE

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 27139 J Forschungszentrum

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source
CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; and more in NVIDIA HPC SDK

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 27139

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 27139

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 27139

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 27139 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 28139 Forschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Thread
PNV IV

Member of the Helmholtz Association 13 October 2022

Slide 28139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Threads
S

Member of the Helmholtz Association 13 October 2022

Slide 28139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 28139 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|
- [Block|

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 28139 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |
- [Blocks |
© © @

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 28139 Forschungszentvum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|

Member of the Helmholtz Association 13 October 2022

Slide 28139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |

= Threads & blocksin 3D

Member of the Helmholtz Association 13 October 2022

Slide 28139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

- m* i i
« [Blodks] -+ &1 | i
A ORENCY :

= Threads & blocksin 3D

= Parallel function: kernel

= __global__ kernel(int a, float * b) { }

= Access own ID by global variables threadIdx.x, blockIdx.y,...
= Execution entity: threads

s Lightweight — fast switchting!

= 1000s threads execute simultaneously — order non-deterministic!

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 28139 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA SAXPY

With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float » y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a = x[i] + y[i];
}

int a = 42;

int n = 10;

float x[n], yInl;

// fill x, y

cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n = sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, X, y);

cudaDeviceSynchronize();

g JULICH

Member of the Helmholtz Association 13 October 2022 Slide 29139 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA SAXPY

With runtime-managed data transfer

__global £ void saxpy_cuda(int n, float a, float * x, float * y) { Specify kernel
int i = blockIdx.x * blockDim.x + threadIdx.x; :
if (1<n)e——— ID variables

y[il = a = x[i] + y[i];

Guard against

} too many threads
int a = 42;
int n = 10;

float x[n], yInl; Allocate GPU-capable
// fill x, y / memory
cudaMallocManaged(&x, n = sizeof(float));

cudaMallocManaged(&y, n = sizeof(float)); Call kernel

/—‘ 2 blocks, each 5 threads
saxpy_cuda<<<2, 5>>>(n, a, X, y);

’

cudaDeviceSynchronize();0// SR il

9 JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 13 October 2022 Slide 30139

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

for (int 1
out[i]

Member of the Helmholtz Association

0; 1 < N; i++)
scale = in[i];

13 October 2022

Slide 31139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

for (
int i = 0;
i< N;
1++
)
out[i] = scale * in[i];
}
‘ JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 31139 J Forschungszentrum | CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int 1 = 0
for (;
i< N;
1++
)
out[i] = scale * in[i];
}
‘ JULICH JULICH
‘ SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 31139 Forschungszentrum | CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int i =0
for (;
'
1++
)
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 13 October 2022 Slide 31139 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int i =0
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 13 October 2022 Slide 31139 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

__global__ void scale(float scale, float * in, float * out, int N) {

int i =0
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 13 October 2022 Slide 31139 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x;

if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 13 October 2022 Slide 31139 Forschungszentrum CENTRE

Kernel Conversion
Recipe for C Function — CUDA Kernel

Identify Loops Extract Termination Condition Add global
Replace 1 by threadIdx.xJ...including block configuration

__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x + blockIdx.x * blockDim.x;

if (1 < N)
out[i] = scale = in[il;

JULICH
SUPERCOMPUTING
CENTRE

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 31139

Kernel Conversion

Summary

= C function with explicit loop
void scale(float scale, float * in, float * out, int N) {
for (int 1 = 0; 1 < N; i++)
out[i] = scale = in[i];

}

= CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
if (1 < N)
out[i] = scale = in[i];

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 13 October 2022 Slide 32139

Programming GPUs
Performance Analysis

GPU Tools

The helpful helpers helping helpless (and others)

= NVIDIA
cuda-gdb GDB-like command line utility for debugging
compute-sanitizer Check memory accesses, race conditions, ...
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio
(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler

= AMD

rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 34139 J Forschungszentrum

Nsight Systems

CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls

160,407,572 0
CUDA Kernel Statistics:

Time(%) Total Time (ns

158,686,617
25,120

Member of the Helmholtz Association

Minimum Maximum

25,648,117

Maximum

14,525,819 25,652,783 main_106_gpu

2,304 3,680 main_106_gpu__red

Slide 35139

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Nsight Systems

GUI

Member of the Helmholtz Association

ece

NVIDIA Nsight Systems 2020.4.1

View Tools Help

£ Timeline View

23s

245

1 1 error, 4 warnings, 16 messages

» CPU (256)

» Threads (6)

~ CUDAHW (Tesla

~ 15% Kemels

» 796% main_106_gpu
» 19.0% main_118_gpu
3kernel groups hidder ==
~ 98.5% Memory
<01% Memset
51.1% HtaD memcpy
48.9% DtoH memcpy

Lok ki) sl k]

13 October 2022

Slide 36139

e T —
<] D
EventsView ~ |
Name ~[4]
Name ~ Start Duration GPU Context. il
7 Memset 1795165 1,760 us GPUO Stream 14
8 main_106_gpu 1795175 472,923us | GPUO Stream 14
9 main_106_gpu_red 1795218 3488 ps GPUO Stream 14
10 Memcpy DtoH 17,9522 2,080 ps GPU O Stream 14
n Memcpy DtoH 1795225 1,760 us GPUO Stream 14
(=1
T ————

Nsight Compute

GUI

|Details ~ | Launch: |- mc_polymer_iteration_352_gpu ~ || ¥ |-/ | Add saseline |=| | Apply Rules |
rrent 1194.. Time: 2682 msecond Cycles: 28191.300 Regs: 144 GPU: A100-SXM4-40GB SM Frequency: 1.08 cycle/nsecond CC: 80 Process: [31938] SOMA @ @ o
100 126.. 7747 msecond Cycles: 101123609 Regs: 144 GPU: Tesla VI00-SXM2-16GB SM Frequency: 131 cycle/nsecond CC: 70 Process: [30412] SOMA
PU Speed Of nghk A I N=
-level overview of for mory f the GPU. For each unit, the Speed Of Light (SOL) reports me achieved percentage of utilization with respect to the
retical maximum. H\gh level overview of the unhza non for compute and memory resources of the GPU presented as a roofline char
SM [%] 20.51 (+1 Duration [msecond] 25.82 (=66.54%)
Memory [%] 55.82 Elapsed Cycles [cycle] 28191300 (-72.12%)
L1/TEX Cache [%] 40.19 SM Active Cycles [cycle] 27784365.64 (-72.30%)
L2 cache [%] 61.89 (+149.01%) | SM Frequency [cycle/nsecond] 1.09 (-16.67%)
DRAM [5] 31,52 (-42.82%) |DRAM Frequency [cycle/nsecond] 1.21 (+38.21%)

GPU Utilization

SM[%) F
00 100 200 300 400 500 800 70,0 800 200 100
Speed Of Light [%]
SOL SM Breakdown SOL Memory Breakdown
SOL SM: Issue Active [%] 2051 (+160.09%) | | SOLL2: Xbar2lts Cycles Active [%] 5582 (+124.58%)
SOL SM: Inst Executed (%) 2046 (+160.10%) | | SOLL2: T Tag Requests [%] 4527 (+178.82%)
SOL SM: Pipe Shared Cycles Active [%] 18.36 (+165.69%)| | SOL Li: M Litex2xbar Req Cycles Active [%] 3961 (+107.93%)
SOL SM: Pipe Fp64 Cycles Active [%] 18.36 (+16569%) SOLL2: T Sectors [%] 3880 (+7123%)
SOL SM: Inst Executed Pipe Lsu %] 1080 (+127.96%) | SOL L Data Pipe Lsu Wavefronts [%] 3410 (+76.03%)
SOL SM: Pipe Alu Cycles Active [%] 1037 (+161.23%) | SOL GPU: Dram Throughput [%] 3162 (-4282%)
SOL SM: Inst Executed Pipe Cbu Pred On Any [%] 813 (+71.98%)| |SOLL1: Lsu Writeback Active [%] 2483 (+6367%)
SOL SM: Mio2rf Writeback Active (%] 810 (+161.91%) | | SOLL2: D Sectors [%] 22,64 (+116.71%)
SOL SM: Mio P Read Cycles Active [%] 810 (+105.96%) | | SOL L2: D Sectors Fill Device [%] 1279 (-12.20%)
SOL SM: Mio Pq Write Cycles Active [%] 753 (+166.64%) | | SOL L1 Lsuin Requests [%] 1080 (+127.96%)
SOL SM: Pipe Fma Cycles Active [%] 722 (+16580%) | SOLL2: Lts2xbar Cycles Active [%] 882 (-21.48%)
SOL SM: Mio Inst Issued [%] 655 (+12369%)| | SOLL1: M Xbar2litex Read Sectors %] 6.39 (-2558%)
SOL SM: Inst Executed Pipe Xu [%] 459 (+16569%) | SOL L1: Data Bank Reads [%] 309 (+77:11%)
SOL $M: Inst Executed Pipe Uniform [%] 120 |SOLL1: Data Bank Writes [%] 195 (+23.96%)
SOL SM: Inst Executed Pipe Adu [%] 118 (+16553%) | | SOLL1: Texin Sm2tex Req Cycles Active [%] 000 (+258.69%)
SOL IDC: Request Cycles Active [%] 059 (+165.37%) | | SOL Li: F Wavefronts [%] 000 (+258.69%)
SOL SM: Inst Executed Pipe Tex [%] 0 (+000%)| SOLL2: D SectorsFill Sysmem (%] 000 (+inf%)

SOL SM: Inst Executed Pipe Ipa [%] 0 (#000%)| SOLL1: Data Pipe Tex Wavefronts [%] 0 (+0.00%)

Conclusion

Conclusion, Resources

= GPUs provide highly-parallel computing power
= Many ways to use them

Libraries Best performance, but need to map
Directives Easy to use, but needs to fit
Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Conclusion, Resources

= GPUs provide highly-parallel computing power
= Many ways to use them

Libraries Best performance, but need to map
Directives Easy to use, but needs to fit
Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Conclusion, Resources

= GPUs provide highly-parallel computing power
= Many ways to use them

Libraries Best performance, but need to map
Directives Easy to use, but needs to fit
Native Most performance, but sometimes a little hard

Member of the Helmholtz Association 13 October 2022 Slide 39139

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Conclusion, Resources

= GPUs provide highly-parallel computing power
= Many ways to use them

Libraries Best performance, but need to map
Directives Easy to use, but needs to fit
Native Most performance, but sometimes a little hard

Thank you
ur attention’
ch.de

for yo
a.herten@fZ

Jueh

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 39139 J Forschungszentrum

mailto:a.herten@fz-juelich.de

Appendix

Appendix

Glossary
References
@) JULICH| &
SUPERCOMPUTING
Member of the Helmholtz Association 13 October 2022 Slide 218 Furschungszen"u,—n CENTRE

Glossary |

AMD Manufacturer of CPUs and GPUs. 54, 55, 56, 57, 58, 59, 92, 93

APl A programmatic interface to software by well-defined functions. Short for
application programming interface. 54, 55, 56, 57, 58, 59

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2,53, 54, 55,56, 57, 58,59, 60, 61,62, 63, 64, 65, 66, 67, 68, 69, 70, 93

HIP GPU programming model by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
54,55, 56, 57, 58, 59

NVIDIA US technology company creating GPUs. 22, 23, 24, 54, 55, 56, 57, 58, 59, 81, 92

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 318 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary I

OpenACC Directive-based programming, primarily for many-core machines. 48, 49, 50, 51,
52
OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 54, 55, 56, 57, 58,
59

OpenMP Directive-based programming, primarily for multi-threaded machines. 48, 49,
50,51, 52

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 54, 55, 56, 57, 58, 59

SAXPY Single-precision A x X+ Y. Asimple code example of scaling a vector and adding
an offset. 69, 70

@) JULICH
Member of the Helmholtz Association 13 October 2022 slide 418 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary Il

CPU Central Processing Unit. 6,7, 8, 15, 16, 17, 18, 19, 20, 21, 22,23, 24, 54, 55, 56, 57,
58,59,92,93

GPU Graphics Processing Unit. 2,3,6,7,8,9,10,11,12, 13,14, 15, 16, 17, 18, 19, 20,
21, 22,23, 24,30, 38, 39, 40,41, 42,43, 44,47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59,
70, 80, 81, 86, 87, 88, 89,92, 93

SIMD Single Instruction, Multiple Data. 15, 16, 17, 18, 19, 20, 21, 22,23, 24

SIMT Single Instruction, Multiple Threads. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22,23,24
SM Streaming Multiprocessor. 15, 16,17, 18, 19, 20, 21, 22,23, 24
SMT Simultaneous Multithreading. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 Slide 518 J Forschungszentrum

References: Images, Graphics |

[1] Alexandre Debieve. Title Graphic: Bowels of computer. Freely available at Unsplash. URL:
https://unsplash.com/photos/F07JI1lwjOtU (page 2).

[2] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages4,5).

[3] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages®6,7).

[4] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages6,T).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 slide 618 J Forschungszentrum

https://unsplash.com/photos/FO7JIlwjOtU
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

References: Images, Graphics I

(5]

Memb

@) JULICH
er of the Helmholtz Association 13 October 2022 slide 718 J Forschungszentrum

Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

Nvidia Corporation. Pictures: Ampere GPU. Nvidia Devblogs: NVIDIA Ampere Architecture
In-Depth. URL:
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
(pages 22-24).

Nvidia Corporation. Pictures: Hopper GPU. Nvidia Developer Technical Blog: NVIDIA
Hopper Architecture In-Depth. URL: https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

AMD. Pictures: MI250 GPU. AMD CDNA2 Architecture Whitepaper. URL: https:
//www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf.
JULICH

SUPERCOMPUTING
CENTRE

https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf

References: Images, Graphics I

[9] Wes Breazell. Picture: Wizard. UrL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 39-43).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 13 October 2022 slide 8l8 J Forschungszentrum

https://thenounproject.com/wes13/collection/its-a-wizards-world/

	Outline
	*gpu Architecture
	Empirical Motivation
	Comparisons
	GPU Architecture
	Summary

	Programming GPUs
	Libraries
	Directives
	CUDA C/C++
	Performance Analysis

	Conclusion
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References

