
Sprint 6

Challenges and results 
experienced during the 
ESMValTool sprint

Birgit Hassler (DLR), Rémi Kazeroni (DLR)*, Manuel Schlund (DLR), Jörg Benke (JSC)

* now at CNRS-IPSL



General information - I

2

Observed and simulated time series of the anomalies in 
annual and global mean near-surface air temperature (Figure 
3.4 from Eyring et al., 2021).

• community-developed, open-source 
software tool for the evaluation and 
analysis of output from ESMs

• well-documented source code, scientific 
background documentation, as well as a 
detailed description of the technical 
infrastructure

• provenance record that allows for 
traceability and reproducibility

• has been used for contributions to several 
chapters of the Sixth Assessment Report 
(AR6) of the Intergovernmental Panel on 
Climate Change (IPCC)



General information - II

3

• GitHub: https://github.com/ESMValGroup/ESMValTool and 

https://github.com/ESMValGroup/ESMValCore

• Online documentation (Sphinx and ReadTheDocs): https://docs.esmvaltool.org/

• Tutorial: https://esmvalgroup.github.io/ESMValTool_Tutorial/

• Website: https://www.esmvaltool.org/

• Usage: used in ~60 peer-reviewed articles

• License: Apache-License, Version 2.0

• ESMValCore language: Python 3

• ESMValTool supported languages: Python 3, NCL, R, Julia

• doi: 10.5281/zenodo.3387139 (ESMValCore) and 10.5281/zenodo.3401363 (ESMValTool)

https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValCore
https://docs.esmvaltool.org/en/latest/
https://esmvalgroup.github.io/ESMValTool_Tutorial/
https://www.esmvaltool.org/


Technical and scientific challenges

4

• new challenges stemming from higher resolution and enhanced complexity (e.g. memory 

limits): need to be tackled for ESMValTool to be efficient and scalable in the future, 

especially to perform multi-model analyses and become exascale-ready

• preparation for model simulations with a further increased horizontal and vertical 

resolution, e.g. for the next phase of CMIP or model-intercomparisons for high-resolution 

cloud resolving models: efficient memory handling will become crucial

• processing of native output from the some models (including ICON) for an easier and 

more convenient way to analyze, evaluate or monitor new simulations is possible, BUT: 

for unstructured grids additional information and processing steps are necessary



Status before sprint

5

• Some preprocessor functions are not lazy (~21 out of ~50, at the time of sprint start)
• Requires replacing of NumPy arrays with Dask arrays, or even recoding 
• Optimizing dask distributed schedulers for maximum performance enhancement across multiple nodes



ESMValTool sprint

6

• Task I: Optimizing the memory 

footprint of selected preprocessor 

functions by taking advantage of Dask

• Task II: Developing a concept for using 

Dask distributed schedulers to further 

improve memory management

• Task III: Extending the support of 

unstructured grids in ESMValCore by 

implementing run-time reformatting 

of input data to the UGRID standard 

within Iris (e.g. ocean grids)



Challenges

7

Task M1 M2 M3 M4 M5 M6

Task 0: Learning about the ESMValCore and 

ESMValTool and their code structure X

Task I: Updating the remaining non-lazy 

preprocessor functions to be memory efficient X X X X

Task II: Studying Dask distributed schedulers to 

be able to provide advice on how to further 

improve memory management of ESMValCore
X

Task III: Updating the ESMValCore so that ICON 

data can be made UGRID-compliant at run time X

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint



Challenges

8

Task M1 M2 M3 M4 M5 M6

Task 0: Learning about the ESMValCore and 

ESMValTool and their code structure X

Task I: Updating the remaining non-lazy 

preprocessor functions to be memory efficient X X X X

Task II: Studying Dask distributed schedulers to 

be able to provide advice on how to further 

improve memory management of ESMValCore
X

Task III: Updating the ESMValCore so that ICON 

data can be made UGRID-compliant at run time X

1

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint



Challenges

9

Task M1 M2 M3 M4 M5 M6

Task 0: Learning about the ESMValCore and 

ESMValTool and their code structure X

Task I: Updating the remaining non-lazy 

preprocessor functions to be memory efficient X X X X

Task II: Studying Dask distributed schedulers to 

be able to provide advice on how to further 

improve memory management of ESMValCore
X

Task III: Updating the ESMValCore so that ICON 

data can be made UGRID-compliant at run time X

1

2

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint



Challenges

10

Task M1 M2 M3 M4 M5 M6

Task 0: Learning about the ESMValCore and 

ESMValTool and their code structure X

Task I: Updating the remaining non-lazy 

preprocessor functions to be memory efficient X X X X

Task II: Studying Dask distributed schedulers to 

be able to provide advice on how to further 

improve memory management of ESMValCore
X

Task III: Updating the ESMValCore so that ICON 

data can be made UGRID-compliant at run time X

1

2

3 x
Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint



Challenges

11

Task M1 M2 M3 M4 M5 M6

Task 0: Learning about the ESMValCore and 

ESMValTool and their code structure X

Task I: Updating the remaining non-lazy 

preprocessor functions to be memory efficient X X X X

Task II: Studying Dask distributed schedulers to 

be able to provide advice on how to further 

improve memory management of ESMValCore
X

Task III: Updating the ESMValCore so that ICON 

data can be made UGRID-compliant at run time X

1

2

3 x
Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

• Steep learning curve for ESMValCore (needs more than one month time)
• Experience with Dask and Iris would have been helpful
• Additional requests on Jörg’s time slowed progress down



Results - I

• Seven preprocessor functions were ported to Dask: mask_above_threshold, 

mask_below_threshold, mask_inside_range, mask_outside_range, mask_landsea, 

mask_landseaice and mask_glaciated

12



Results - II

13

Runtimes of different ESMValTool preprocessor functions before (blue) and after (orange) making the corresponding 
function lazy. In this example, one single preprocessor function is applied to 65 years of daily 3D data of the CMIP6 model 
CanESM5. The tests were performed on a single compute node on DKRZ’s Levante with 128 cores and 256 GB of RAM.



Results - I

• Seven preprocessor functions were ported to Dask: mask_above_threshold, 

mask_below_threshold, mask_inside_range, mask_outside_range, mask_landsea, 

mask_landseaice and mask_glaciated

• Clear reduction in runtime (between 20-25% and 80%)

• ESMValTool can now also read the data on systems with less memory than the input 

data size. Before these optimizations implemented here, the evaluation would run out 

of memory.

• Not all preprocessor functions have been ported yet

• Optimizing Dask distributed schedulers was started but not fully explored so that no 

further runtime improvement was achieved

14



Outlook & open questions

• Additional sprint was granted within the European project ESiWACE phase 3 

(https://www.esiwace.eu/) where more of the non-lazy preprocessor functions will be 

ported (by now more than 50 preprocessor functions are available for ESMValCore, of 

which about half is in lazy format)

• Within the ESMValTool community, the capability of converting data at run time to the 

UGRID standard has been implemented now 

• Dask distributed schedulers are optimized by ESMValTool technical core developers 

over time

• Reading ICON data on-the-fly is now being expanded to reading also ICON-Seamless 

data

15

https://www.esiwace.eu/

