* ESMValTool

Earth System Model Evaluation Tool

KKKKKKK oKtz Sprint 6
oy Challenges and results
experienced during the

S ESMValTool sprint

B | Funs Birgit Hassler (DLR), Rémi Kazeroni (DLR)*, Manuel Schlund (DLR), Jorg Benke (JSC)
* now at CNRS-IPSL

. natESM

General information - 1

HadCRUTS
MultiModelMean
ACCESS-CM2
ey (=== ACCESS-ESM1-5
i. AWI-CM-1-1-MR
0 0 20— AWI-ESM-1-1-LR
BCC—CSME-MH
BCC-ESM
CAMS- CSM1 -0
CanESM5
————— CanESMS CanQE
CESM2-

CESM2- FV2 "
CESM2-WACCM™ .
CESM2-WACCM-Fv2™
CIESM
CMCC-CM2-HR4
CMCC-CM2-SR5
CMCC-ESM2
CNRM-CM6-1
CNRM-CMs-1-HR
CNHM ESME 1

Global mean surface air temperature

* community-developed, open-source o
software tool for the evaluation and #0] Reference period
analysis of output from ESMs

_.
Ll
<]
C

0-1900 Mean Temperature (° C)

1.5 1

" " Santa Maria

h #A .':‘
b | [y | -+ 145

Agung
"~ " " El Chichon
Pinatubo

" Krakatoa

* well-documented source code, scientific
background documentation, as well as a
detailed description of the technical
infrastructure

. | | W) =

0.5 1

Change in Temperature (° C)

AR SRR |) bl i
oAy T LR R

0.0 4 INAN TN yy A i
s o ! .

« provenance record that allows for e T = "'EgEgggig’fgm
g
FIO-ESM-2-0

traceability and reproducibility NI v v == SFBE £
. . 2.0 1 Referelnce periold I | | I 1 :::::gég:ﬂ%iﬁ'oc
* has been used for contributions to several —s b T e St
. —— — BerkeleyEarth . aM SM_ _
chapters of the Sixth Assessment Report L N owsetTey e
(AR6) of the Intergovernmental Panel on

Climate Change (IPCC)

= === Kadow
—CMIP6
—CMIPS

————— IROC- E82L

MIROCH .

--------- Pl ESM-1-2-HAM
2-HR¥

Change in Temperature (° C)

Observed and simulated time series of the anomalies in
annual and global mean near-surface air temperature (Figure 05
3.4 from Eyring et al., 2021).

-MM
SAMO UNICON *
TaE
UKESM1 0-LL

s natESM

General information - 11

e GitHub: https://github.com/ESMValGroup/ESMValTool and
https://github.com/ESMValGroup/ESMValCore

e Online documentation (Sphinx and ReadTheDocs): https://docs.esmvaltool.org/

e Tutorial: https://esmvalgroup.github.io/ESMValTool Tutorial/

e Website: https://www.esmvaltool.org/

e Usage: used in ~60 peer-reviewed articles
e License: Apache-License, Version 2.0

e ESMValCore language: Python 3

e ESMValTool supported lanquages: Python 3, NCL, R, Julia
e doi: 10.5281/zenodo0.3387139 (ESMValCore) and 10.5281/zenodo.3401363 (ESMValTool)

https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValCore
https://docs.esmvaltool.org/en/latest/
https://esmvalgroup.github.io/ESMValTool_Tutorial/
https://www.esmvaltool.org/

s natESM

Technical and scientific challenges

* new challenges stemming from higher resolution and enhanced complexity (e.g. memory
limits): need to be tackled for ESMValTool to be efficient and scalable in the future,
especially to perform multi-model analyses and become exascale-ready

* preparation for model simulations with a further increased horizontal and vertical
resolution, e.g. for the next phase of CMIP or model-intercomparisons for high-resolution
cloud resolving models: efficient memory handling will become crucial

* processing of native output from the some models (including ICON) for an easier and
more convenient way to analyze, evaluate or monitor new simulations is possible, BUT:
for unstructured grids additional information and processing steps are necessary

atESM

Status before sprint

INPUT DATA

CMIP models
Observations
Models in native formats

LOAD DATA
(Iris cube)

VARIABLE
DERIVATION

CMOR CHECK
AND FIXES

HORIZONTAL
REGRIDDING

' r target grid
Derivation -

ESMValCore algorithm

Model-specific
CMOR fixes

config
developer

recipe N PREPROCESSED
INPUT DATA (NetCDF file)

OUTPUT

Graphic files
NetCDF files

UNIT
CONVERSION

ESMValCore v2.0

DIAGNOSTICS

Python scripts
NCL scripts
Rflulia scripts

ESMValTool v2.0

Provenance & Log files

- Data [j Preprocessor module [:]Custom algorithm -Diagnustic scripts

D Recipe settings B esMvalTool recipe I configuration file I esmvalcore

* Some preprocessor functions are not lazy (~21 out of ~50, at the time of sprint start)
* Requires replacing of NumPy arrays with Dask arrays, or even recoding
* Optimizing dask distributed schedulers for maximum performance enhancement across multiple nodes

s natESM

ESMValTool sprint

* Task I: Optimizing the memory

footprint of selected '
ootprint of selected preprocessor Roadmap ¢o exascale readiness

functions by taking advantage of Dask

Implemented Proposed
» Task Il: Developing a concept for using work
Dask distributed schedulers to further 7T
_ Basic ICON AN
improve memory management regridding Taskl | Y —
scheme S—
. Task Il 1 distributed
* Task lll: Extending the support of Taskm | 1 e
S ICON on-the- 4
unstructured grids in ESMValCore by fly CMORizer ;B
. . . . /’
implementing run-time reformatting Se=”

of input data to the UGRID standard
within Iris (e.g. ocean grids)

s natESM

Challenges

Task M1 M2 M3 M4 M5 (M6

Task 0: Learning about the ESMValCore and
ESMValTool and their code structure

Task I: Updating the remaining non-lazy
preprocessor functions to be memory efficient

Task Il: Studying Dask distributed schedulers to
be able to provide advice on how to further X
improve memory management of ESMValCore

Task lll: Updating the ESMValCore so that ICON
data can be made UGRID-compliant at run time

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

s natESM

Challenges

Task M1 M2 M3 M4 M5 (M6

I Task 0: Learning about the ESMValCore and
ESMValTool and their code structure

Task I: Updating the remaining non-lazy
preprocessor functions to be memory efficient

Task Il: Studying Dask distributed schedulers to
be able to provide advice on how to further X
improve memory management of ESMValCore

Task lll: Updating the ESMValCore so that ICON
data can be made UGRID-compliant at run time

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

s natESM

Challenges

Task M1 M2 M3 M4 M5 (M6

I Task 0: Learning about the ESMValCore and
ESMValTool and their code structure

2 Task I: Updating the remaining non-lazy
preprocessor functions to be memory efficient

Task Il: Studying Dask distributed schedulers to
be able to provide advice on how to further X
improve memory management of ESMValCore

Task lll: Updating the ESMValCore so that ICON
data can be made UGRID-compliant at run time

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

s natESM

Challenges

Task M1 M2 M3 M4 M5 (M6

I Task 0: Learning about the ESMValCore and
ESMValTool and their code structure

2 Task I: Updating the remaining non-lazy
preprocessor functions to be memory efficient

Task Il: Studying Dask distributed schedulers to
be able to provide advice on how to further X
improve memory management of ESMValCore

, TaskIll: Updating the ESMValCore so that ICON
data’®an be made UGRID-compliant at run time

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

s natESM

Challenges

Task M1 M2 M3 M4 M5 (M6

I Task 0: Learning about the ESMValCore and
ESMValTool and their code structure

2 Task I: Updating the remaining non-lazy
preprocessor functions to be memory efficient

Task Il: Studying Dask distributed schedulers to
be able to provide advice on how to further X
improve memory management of ESMValCore

, TaskIll: Updating the ESMValCore so that ICON
data’®an be made UGRID-compliant at run time

Weekly meetings with natESM RSE and DLR RSE for the duration of the sprint

e Steep learning curve for ESMValCore (needs more than one month time)
* Experience with Dask and Iris would have been helpful
* Additional requests on Jorg’s time slowed progress down

s natESM

Results - I

* Seven preprocessor functions were ported to Dask: mask _above threshold,
mask _below_threshold, mask_inside_range, mask outside range, mask landsea,
mask_landseaice and mask_glaciated

Results - 11

160

140

120

100

8

o

Run time [s]

6

o

4

o

2

o

o

atESM

Run times of preprocessor functions

mask_above_threshold mask_below_threshold mask_inside_range mask_outside_range mask_landsea mask_landseaice mask_glaciated

mm before
e after

Runtimes of different ESMValTool preprocessor functions before (blue) and after (orange) making the corresponding
function lazy. In this example, one single preprocessor function is applied to 65 years of daily 3D data of the CMIP6 model
CanESM5. The tests were performed on a single compute node on DKRZ’s Levante with 128 cores and 256 GB of RAM.

13

s natESM

Results - I

* Seven preprocessor functions were ported to Dask: mask _above_threshold,
mask _below_threshold, mask_inside_range, mask outside range, mask landsea,
mask_landseaice and mask_glaciated

e Clear reduction in runtime (between 20-25% and 80%)

 ESMValTool can now also read the data on systems with less memory than the input
data size. Before these optimizations implemented here, the evaluation would run out
of memory.

* Not all preprocessor functions have been ported yet

* Optimizing Dask distributed schedulers was started but not fully explored so that no
further runtime improvement was achieved

s natESM

Outlook & open questions

* Additional sprint was granted within the European project ESiWACE phase 3
(https://www.esiwace.eu/) where more of the non-lazy preprocessor functions will be

ported (by now more than 50 preprocessor functions are available for ESMValCore, of
which about half is in lazy format)

* Within the ESMValTool community, the capability of converting data at run time to the
UGRID standard has been implemented now

* Dask distributed schedulers are optimized by ESMValTool technical core developers
over time

e Reading ICON data on-the-fly is now being expanded to reading also ICON-Seamless
data

https://www.esiwace.eu/

