
Sprint 5

Expanding the MESSy
infrastructure for CPU/GPU
memory management

Astrid Kerkweg (FZ Jülich), Patrick Jöckel (DLR), Enrico Degregori (DKRZ), Timo Kirfel
(FZ Jülich), Kerstin Hartung (DLR)

General information

• MESSy is a software project …
➢… providing an infrastructure for coupling atmospheric legacy models (ICON,

ECHAM, COSMO) to specialised ESM components, the so-called submodels

➢… providing a collection of specialised ESM components (submodels) like

➢ … chemistry packages (as kinetic solvers, dry deposition and scavenging of tracer gases etc.

➢ … physical parametrisations (e.g., cloud, convection, …)

➢ … diagnostics (e.g. output on tracks of measurement platforms as aircraft, balloons… ,
calculation of iso-surfaces, …)

• MESSy is used e.g., …
• (predominantly) as chemistry-climate model (CCM, e.g. in CMIP6 or CCMI, Jöckel et al.,

2016)

• for process understanding, e.g. in detailed studies of multiphase chemistry (e.g., Franco
et al., 2021, Rosanka et al., 2023)

• in idealised studies (Garny et al., 2020)

• …

2

General information

• MESSy contains a large code base

➢ code can not be ported to GPU

at once

3

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

General information

• MESSy contains a large code base

➢ code can not be ported to GPU

at once

4

(legacy) basemodels

submodels (SM)

core

SM interface

MESSy
infrastructure

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

General information

• MESSy contains a large code base

➢ code can not be ported to GPU

at once

➢porting individual processes

leads to large overhead due to
too many data copies

5

(legacy) basemodels

core

SM interface

MESSy
infrastructure

GPU

co
p

y-
in

co
p

y-
o

u
t

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

General information

• MESSy contains a large code base

➢ code can not be ported to GPU

at once

➢porting individual processes

leads to large overhead due to
too many data copies

➢ infrastructure expansion for
efficient copy-strategy required

6

(legacy) basemodels

core

SM interface

MESSy
infrastructure

GPU

co
p

y-
in

co
p

y-
o

u
t

co
p

y-
in

GPU

co
p

y-
o

u
t

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

General information

7

Sprint task: develop a concept for a MESSy
infrastructure expansion allowing for an efficient
data transfer between host and device

Sprint duration: 4 month

natESM programmer: Enrico Degregori

Results: clarification of terms

the MESSy infrastructure submodel CHANNEL provides an interface for the flexible and
efficient data exchange / sharing between different processes (submodels).

• channel objects, representing data fields including their meta information (e.g.
attributes) and their underlying geometric structure (representation),

• channels, representing sets of “related” channel objects with additional meta
information. The “relation” can be, for instance, the simple fact that the channel
objects are defined by the same submodel.

Functions:

 CALL new_channel_objects => creates new data object

 CALL get_channel_object => set pointer to data field

8

Challenges

• The big MESSy code base (internal coupling to 5 legacy

basemodels) => long familiarisation period required

• Solution: use MESSy DWARF

• simplified configuration, no legacy basemodel:

DWARF basemodel consists of, an initialisation phase, time

loop and finalisation phase

• add simplified MESSy submodels GPU1, GPU2, GPU3 using

the most important infrastructure components for memory

exchange (CHANNEL, TRACER and TENDENCY)

9

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

Challenges

• The big MESSy code base (internal coupling to 5 legacy

basemodels) => long familiarisation period required

• Solution: use MESSy DWARF

• simplified configuration, no legacy basemodel:

DWARF basemodel consists of, an initialisation phase, time

loop and finalisation phase

• add simplified MESSy submodels GPU1, GPU2, GPU3 using

the most important infrastructure components for memory

exchange (CHANNEL, TRACER and TENDENCY)

10

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

Challenges

• The big MESSy code base (internal coupling to 5 legacy

basemodels) => long familiarisation period required

• Solution: use MESSy DWARF

• simplified configuration, no legacy basemodel:

DWARF basemodel consists of, an initialisation phase, time

loop and finalisation phase

• add simplified MESSy submodels GPU1, GPU2, GPU3 using

the most important infrastructure components for memory

management (CHANNEL, TRACER and TENDENCY)

11

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

Challenges

• The big MESSy code base (internal coupling to 5 legacy

basemodels) => long familiarisation period required

• Solution: use MESSy DWARF

• simplified configuration, no legacy basemodel:

DWARF basemodel consists of, an initialisation phase, time

loop and finalisation phase

• add simplified MESSy submodels GPU1, GPU2, GPU3 using

the most important infrastructure components for memory

exchange (CHANNEL, TRACER and TENDENCY)

12

This DWARF was provided at
the beginning of the sprint
=> concentration on basic
infrastructure elements
possible
=> no need of going into details
and specifics of individual
(legacy) basemodels

courtesy of P. Jöckel (DLR), modif. by A. Kerkweg (FZJ)

Results: overview

• Based on this DWARF setup Enrico developed a concept and already implemented it

• in addition to the GPU1-3 submodels, he tested MECCA (which core was already

ported to GPUs via CUDA before).

• requirements for the applicability within a full MESSy setup were discussed (and

implemented during and after the sprint – mainly by Astrid Kerkweg)

• additional developments required for the application when MESSy is coupled to a full

dynamical model were discussed (see outlook).

13

Results: the concept

logging of GPU related information takes place via the channel object meta-data

• lopenacc – is a channel object at all required on GPU?

• location – on which device resides the most updated data?
(MEMORY_HOST, MEMORY_HOST_DEVICE, MEMORY_DEVICE)

• mem_id / oriobj – special treatment of channel objects which memory was allocated somewhere else

(added after the sprint – examples were not included in DWARF test setup)

14

Results: the concept

logging of GPU related information takes place via the channel object meta-data

• lopenacc – is a channel object at all required on GPU?

• location – on which device resides the most updated data?
(MEMORY_HOST, MEMORY_HOST_DEVICE, MEMORY_DEVICE)

• mem_id / oriobj – special treatment of channel objects which memory was allocated somewhere else

(added after the sprint – examples were not included in DWARF test setup)

15

=> memory access MUST always proceed via

• get_channel_object calls or

• (for prognostic variables) via TENDENCY

Results: the concept

logging of GPU related information takes place via the channel object meta-data

• lopenacc – is a channel object at all required on GPU?

• location – on which device resides the most updated data?
(MEMORY_HOST, MEMORY_HOST_DEVICE, MEMORY_DEVICE)

• mem_id / oriobj – special treatment of channel objects which memory was allocated somewhere else

(added after the sprint – examples were not included in DWARF test setup)

16

=> memory access MUST always proceed via

• get_channel_object calls or

• (for prognostic variables) via TENDENCY

• check / copies always happens at the beginning
of a submodel call

• GPU infrastructure expansion is fully hidden
behind usual API calls

=> when coding a submodel as usual for CPU
the developer does not need to explicitly take care
of the GPU expansion

Results: consequences

• the MESSy infrastructure and process submodels must only use the API routines of
CHANNEL and TENDENCY to access memory

• get_channel_object calls are required every time step to check the memory location
and trigger copy to/from device (consistent with ICON implementation)

• prognostic variables can only be accessed / modified using TENDENCY routines

• tracers need to be re-ordered into 2 blocks (one only CPU, one on GPU+ CPU) to
optimise the memory allocation on the device

17

Results: consequences

• the MESSy infrastructure and process submodels must only use the API routines of
CHANNEL and TENDENCY to access memory

• get_channel_object calls are required every time step to check the memory location
and trigger copy to/from device (consistent with ICON implementation)

• prognostic variables can only be accessed / modified using TENDENCY routines

• tracers need to be re-ordered into 2 blocks (one only CPU, one on GPU+ CPU) to
optimise the memory allocation on the device

18

=> cleanup of MESSy code required – concepts that previously existed must now be
followed exactly and without exception
=> done during and after the sprint (mainly by Astrid Kerkweg)
=> status “acc_aware” created, i.e., a submodel triggers the memory update but is itself
not ported to GPU. Submodels for CCMI2/RD1 setup have been made “acc_aware”.

Results: Conclusion

• we are about to merge the GPU development branch into the MESSy development

branch

• thanks to Enricos work, we not only have a concept, but on the MESSy side a fully

implemented GPU infrastructure

19

Results: Conclusion

• we are about to merge the GPU development branch into the MESSy development

branch

• thanks to Enricos work, we not only have a concept, but on the MESSy side a fully

implemented GPU infrastructure

20

on the MESSy side ???

The legacy models do not use the MESSy infrastructure routines

=> procedure required on the MESSy side which triggers the basemodel data to be

updated on the device the basemodel is running on.

Outlook & open questions

• ESiWACE3 (Centre of Excellence in Simulation of Weather and Climate in Europe)

successful application for support getting ICON/MESSy including the GPU

infrastructure into production.

• write routine to trigger data copies at the end of each entry point to the device ICON is running on

• port MESSy infrastructure submodels where required to GPU

• (optional) port further MESSy process submodels to GPU

• benchmarking of GPU infrastructure expansion

21

Outlook & open questions

• How is the pay-off between additional instructions to be followed to check if

copies are required in contrast to the time saved by saving unnecessary copies

between host and device?

• What is the consequence of new chip developments providing improved memory

access times (between host and device)?

• Very much wanted (but most likely not to be found): a (always valid) recipe how

to configure a simulation (GPU/CPU) dependent on the setup.

We need a “real” case (not DWARF, but ICON/MESSy or EMAC) to check the full

consequences

22

Outlook & open questions

• How is the pay-off between additional instructions to be followed to check if

copies are required in contrast to the time saved by saving unnecessary copies

between host and device?

• What is the consequence of new chip developments providing improved memory

access times (between host and device)?

• Very much wanted (but most likely not to be found): a (always valid) recipe how

to configure a simulation (GPU/CPU) dependent on the setup.

We need a “real” case (not DWARF, but ICON/MESSy or EMAC) to check the full

consequences

23

	Default Section
	Slide 1: Sprint 5 Expanding the MESSy infrastructure for CPU/GPU memory management
	Slide 2: General information
	Slide 3: General information
	Slide 4: General information
	Slide 5: General information
	Slide 6: General information
	Slide 7: General information
	Slide 8: Results: clarification of terms
	Slide 9: Challenges
	Slide 10: Challenges
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13: Results: overview
	Slide 14: Results: the concept
	Slide 15: Results: the concept
	Slide 16: Results: the concept
	Slide 17: Results: consequences
	Slide 18: Results: consequences
	Slide 19: Results: Conclusion
	Slide 20: Results: Conclusion
	Slide 21: Outlook & open questions
	Slide 22: Outlook & open questions
	Slide 23: Outlook & open questions

