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General information

• MESSy is a software project …
➢… providing an infrastructure for coupling atmospheric legacy models (ICON, 

ECHAM, COSMO) to specialised ESM components, the so-called submodels

➢… providing a collection of specialised ESM components (submodels) like

➢ … chemistry packages (as kinetic solvers, dry deposition and scavenging of tracer gases etc.

➢ … physical parametrisations (e.g., cloud, convection, …)

➢ … diagnostics (e.g. output on tracks of measurement platforms as aircraft, balloons… , 
calculation of iso-surfaces, …)

• MESSy is used e.g., …
• (predominantly) as chemistry-climate model (CCM,  e.g.  in CMIP6 or CCMI, Jöckel et al., 

2016)

• for process understanding, e.g. in detailed studies of multiphase chemistry (e.g., Franco 
et al., 2021, Rosanka et al., 2023)

• in idealised studies (Garny et al., 2020)

• …
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General information

• MESSy contains a large code base

➢ code can not be ported to GPU 

at once
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General information

• MESSy contains a large code base

➢ code can not be ported to GPU 

at once

➢porting individual processes 

leads to large overhead due to 
too many data copies
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General information

• MESSy contains a large code base

➢ code can not be ported to GPU 

at once

➢porting individual processes 

leads to large overhead due to 
too many data copies

➢ infrastructure expansion for 
efficient copy-strategy required
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General information
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Sprint task: develop a concept for a MESSy 
infrastructure expansion allowing for an efficient 
data transfer between host and device

Sprint duration: 4 month

natESM programmer:  Enrico Degregori



Results:  clarification of terms

the MESSy infrastructure submodel CHANNEL provides an interface for the flexible and 
efficient data exchange / sharing between different processes (submodels).

• channel objects, representing data fields including their meta information (e.g. 
attributes) and their underlying geometric structure (representation), 

• channels, representing sets of “related” channel objects with additional meta 
information. The “relation” can be, for instance, the simple fact that the channel 
objects are defined by the same submodel. 

Functions:

 CALL new_channel_objects => creates new data object

 CALL get_channel_object     => set pointer to data field
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Challenges

• The big MESSy code base (internal coupling to 5 legacy 

basemodels)  => long familiarisation period required

• Solution: use MESSy DWARF

• simplified configuration, no legacy basemodel:                   

DWARF basemodel consists of, an initialisation phase, time 

loop and finalisation phase

• add simplified MESSy submodels GPU1, GPU2, GPU3 using 

the most important infrastructure components for memory 

exchange (CHANNEL, TRACER and TENDENCY)
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This DWARF was provided at 
the beginning of the sprint
=> concentration on basic 
infrastructure elements 
possible
=> no need of going into details 
and specifics of individual 
(legacy) basemodels
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Results: overview

• Based on this DWARF setup Enrico developed a concept and already implemented it

• in addition to the GPU1-3 submodels, he tested MECCA (which core was already 

ported to GPUs via CUDA before).

• requirements for the applicability within a full MESSy setup were discussed (and 

implemented during and after the sprint – mainly by Astrid Kerkweg)

• additional developments required for the application when MESSy is coupled to a full 

dynamical model were discussed (see outlook).
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Results: the concept

logging of GPU related information takes place via the channel object meta-data

• lopenacc – is a channel object at all required on GPU?

• location – on which device resides the most updated data?                                      
(MEMORY_HOST, MEMORY_HOST_DEVICE, MEMORY_DEVICE)

• mem_id / oriobj – special treatment of channel objects which memory was allocated somewhere else 

(added after the sprint – examples were not included in DWARF test setup)
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=> memory access MUST always proceed via 

• get_channel_object calls or 

• (for prognostic variables) via TENDENCY
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=> memory access MUST always proceed via 

• get_channel_object calls or 

• (for prognostic variables) via TENDENCY

• check / copies always happens at the beginning 
of a submodel call

• GPU infrastructure expansion is fully hidden 
behind usual API calls 

=> when coding a submodel as usual for CPU
the developer does not need to explicitly take care 
of the GPU expansion



Results:  consequences

• the MESSy infrastructure and process submodels must only use the API routines of 
CHANNEL and TENDENCY to access memory

• get_channel_object calls are required every time step  to check the memory location 
and trigger copy to/from device (consistent with ICON implementation)

• prognostic variables can only be accessed / modified using TENDENCY routines

• tracers need to be re-ordered into 2 blocks (one only CPU, one on GPU+ CPU) to 
optimise the memory allocation on the device
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=> cleanup of MESSy  code required – concepts that previously existed must now be 
followed exactly and without exception 
=> done during and after the sprint (mainly by Astrid Kerkweg)
=> status “acc_aware” created, i.e., a submodel triggers the memory update but is itself 
not ported to GPU. Submodels for CCMI2/RD1 setup have been made “acc_aware”.



Results:  Conclusion

• we are about to merge the GPU development branch into the MESSy development 

branch

• thanks to Enricos work, we not only have a concept, but on the MESSy side a fully 

implemented GPU infrastructure
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on the MESSy side ???

The legacy models do not use the MESSy infrastructure routines

=>  procedure required on the MESSy side which triggers the basemodel data to be 

updated on the device the basemodel is running on.



Outlook & open questions

• ESiWACE3 (Centre of Excellence in Simulation of Weather and Climate in Europe) 

successful application for support getting ICON/MESSy including the GPU 

infrastructure into production. 

• write routine to trigger data copies at the end of each entry point to the device ICON is running on

• port MESSy infrastructure submodels where required to GPU

• (optional) port further MESSy process submodels to GPU

• benchmarking of GPU infrastructure expansion
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Outlook & open questions

• How is the pay-off between additional instructions to be followed to check if 

copies are required in contrast to the time saved by saving unnecessary copies 

between host and device?

• What is the consequence of new chip developments providing improved memory 

access times (between host and device)?

• Very much wanted (but most likely not to be found):  a (always valid) recipe how 

to configure a simulation (GPU/CPU) dependent on the setup.

We need a “real” case (not DWARF, but ICON/MESSy or EMAC) to check the full 

consequences
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