
Sprint 4

Challenges and results
experienced during the first
months of the ParFlow sprint

Daniel Caviedes-Voullième (FZ Jülich) & Jörg Benke (JSC)
Stefan Kollet, Andreas Herten (FZ Jülich)

ParFlow

● Integrated hydrological model

● 3D Richards equation + 2D zero-inertia surface flow

● embedded Domain Specific Language (eDSL)

● CUDA and Kokkos-ready via eDSL

2

Plant available water
2021-08-18 daily sum, 30cm depth

Fraction of total PAW [%]

Ground Surface

Water Table

Infiltration Front

Saturated Zone

Vadose Zone

Vegetation

Atmospheric Forcing

Courtesy of Klaus Görgen and Alexandre Belleflamme

Courtesy of Stefan Kollet

https://github.com/parflow

The big picture: ParFlow’s performance portability

3

MPI + eDSL
MPI +

eDSL (CUDA)

MPI +

eDSL (CUDA,

Kokkos[CUDA])

2020 2021 2022 2023

MPI +

eDSL (CUDA,

Kokkos[CUDA,HIP])

eDSL CUDA KokkosHokkanen et al. 2021. doi: 10.1007/s10596-021-10051-4 Piotrowsk et al. IN PREPARATION

Sprint description and challenges

Scope of Request: duration: 5
months

Methods to be used:
● performance analyses
● Approach 1: eDSL + Kokkos

backend
● Approach 2: HIP
● RAPIDS Memory Manager
● targeted systems: AMD MI250

(experimental hardware at JSC,
maybe LUMI)

Criteria for fulfilment:
● performance portability

demonstrated on AMD GPUs
● performance analyses
● proof-of-concept simulation at

the global scale
4

⇒ required understanding the Kokkos workflow inside eDSL
⇒ interaction with Kokkos devs to figure out building Kokkos with ROCm
⇒ Kokkos v4.0.0 release warrants upgrades in eDSL+Kokkos implementation
⇒ we have managed to build, but we are still investigating why runtime crashes

⇒ lower priority, still early

⇒ overcoming several low(er)-level issues with ROCm

⇒ Build process aborted with system flang and hipfort (hipfc)

○ solution: build ParFlow with hipfort and hipcc. Still not fully clear if ok.

⇒ only one experimental node is operational at JSC
⇒ participated in a workshop at JSC supported by AMD engineers (thanks to Andreas

Herten and the Acc. Lab for this)

⇒ delayed response from LUMI for development access (March!)
⇒ need to build all dependencies in LUMI (from OpenMP and up)
⇒ LUMI and/or its filesystem often under maintenance

⇒ still debugging runtime, crashing at non-linear solver stage. Investigating…

-DCMAKE_CXX_FLAGS='--include /p/…/ROCm/5.4.0-gobliflaf-11.2.0-3.2/include/hip/hip_runtime.h'

Starting point: ParFlow eDSL

5

A typical loop in 3D space spanning indices i,j,k

eDSL macro definition for BoxLoopIO

Hokkanen et al. 2021. Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow. Computational Geosciences. doi: 10.1007/s10596-021-10051-4

(embedded Domain Specific Language)

Key idea: abstract code structures which repeat throughout the code into some macros

Same loop, abstracted into the BoxLoopIO macro

eDSL

Starting point: ParFlow eDSL

6

(embedded Domain Specific Language)

eDSL macro definition - sequential (host)

eDSL macro definition - CUDA (device)

eDSL macro definition - Kokkos (host & device / sequential, parallel)

Piotrowski et al. Lightweight embedded DSLs for geoscientific models. IN PREPARATION

Key idea: write all hardware dependent code inside the eDSL macros

Note that in this example, the macro is defined with

the same name (BoxLoopIO) for all three backends

Hokkanen et al. 2021. Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow. Computational Geosciences. doi: 10.1007/s10596-021-10051-4

Kernel launch

Starting point: resolving backends in eDSL

7

Somewhere in Parflow we call BoxLoopI1
BoxLoopI1_cuda

CUDA

HOST

BoxLoopI1_default

Starting point: memory management

8

From parflow/pfsimulator/parflow_lib/pf_cudamalloc.h

From parflow/pfsimulator/parflow_lib/backend_mapping.h
From parflow/pfsimulator/parflow_lib/mg_semi.c

these memory addresses

are used in parallel

regions, therefore they

need to be allocated on

the right memory space

Starting point:

9

eDSL loop macro definition -

Kokkos

eDSL Kokkos wrappers

Approach 1: HIPifying via

10

work in progress!!!

Approach 1: HIPifying via

11

work in progress!!!

HIPified eDSL Kokkos wrappers

HIPified eDSL Kokkos macros

eDSL loop macro definition -

Kokkos

Outlook & open questions

• Performance evaluation of the Kokkos(HIP) solution

• Scaling up in LUMI

• Hard - HIP backend

• Addressing the memory pooling problem
• best solution: redesign memory allocation paradigm in ParFlow

• hacky solution: evaluate the Kokkos pool allocator, or the Umpire memory manager

12

Sprint 4

Challenges and results
experienced during the first
months of the ParFlow sprint

Daniel Caviedes-Voullième (FZ Jülich) & Jörg Benke (JSC)
Stefan Kollet, Andreas Herten (FZ Jülich)

	Slide 1: Sprint 4 Challenges and results experienced during the first months of the ParFlow sprint
	Slide 2: ParFlow
	Slide 3: The big picture: ParFlow’s performance portability
	Slide 4: Sprint description and challenges
	Slide 5: Starting point: ParFlow eDSL
	Slide 6: Starting point: ParFlow eDSL
	Slide 7: Starting point: resolving backends in eDSL
	Slide 8: Starting point: memory management
	Slide 9: Starting point:
	Slide 10: Approach 1: HIPifying via
	Slide 11: Approach 1: HIPifying via
	Slide 12: Outlook & open questions
	Slide 13: Sprint 4 Challenges and results experienced during the first months of the ParFlow sprint

