

Sprint 2

Challenges and results experienced during the ICON-mHM-YAC sprint

Stephan Thober (UFZ), **Sebastian Müller (UFZ)**, Enrico Degregori (DKRZ), René Redler (MPI), Moritz Hanke (MPI), Daniel Klocke (MPI)

General information: Overview and Scope

Energy Momentum

Climate model ensemble Impact models Output variable files. GCM 1 output file 1 impact model 1 river discharge via Coupling soil moisture output file N impact model M evapotranspiration GCM N **ICON** YAC mHM Coupling via memory $R_{\rm s}$ CON.Las Precipitation, 2-m air Temperature, humidity, /CON-Ocean Downward radiation Legend K

Samaniego and Thober et al., 2018 (NCC)

UFZ

 \odot

General information: The mesoscale hydrologic model (mHM)

- spatially explicit distributed hydrologic model on grid cells
- accounts for a variety of processes (e.g., runoff, PET, discharges, flood routing)
- driven by hourly or daily meteorological forcings (e.g., precipitation, temperature)
- utilizes observable basin physical characteristics (e.g., soil-, geological properties)
- main feature of mHM is the approach to estimate parameters at the target resolution based on high resolution physiographic land surface descriptors (MPR)

https://mhm-ufz.org

General information: Yet Another Coupler (YAC)

- .
- developed at DKRZ
- lightweight software library to realise coupling of Earth system model components
- two-dimensional neighborhood search, interpolation, and communication for the coupling between any two models
- efficient and fully parallelized
- supports unstructured and block-structured numerical grids

https://dkrz-sw.gitlab-pages.dkrz.de/yac Hanke and Redler et al., 2016 (GMD)

Work description

- 1) Provide overview of YAC to mHM core developers (RSE)
- 2) Provide mHM overview to ICON-YAC core developers (UFZ)
- 3) Identify mHM source code modificatios necessary for YAC coupling (UFZ/RSE)
- 4) Implement mHM code modifications (UFZ)
- 5) Create dummy component that reads default input meteorology and passes it to mHM (RSE)
- 6) Conduct mHM default simulation coupled to dummy component using YAC (RSE)
- 7) Validate mHM default simulation (UFZ)

- 1) Discuss simulation experiment to conduct coupled ICON-mHM simulation (UFZ/RSE)
- 2) Adapt ICON initialisation to allow external models
- 3) Modify ICON-ESM to provide required variables to mHM via YAC (RSE)
- 4) Provide mHM setup for simulation experiment (UFZ)
- 5) Conduct coupled ICON mHM simulations (RSE)

Results

toy_atm.c double *point_set_data[1]; double **collection data[1] = {point set data}; point set data[0] = tavg; yac cput(tavg field id, nlev, collection data, &info, &err); Meteo tava

pre

coupling.xml

!tavg>		
transient_coupl	le transient_id="2">	
<source< td=""><td><pre>component_ref="2" transient_grid_ref="2"/></pre></td></source<>	<pre>component_ref="2" transient_grid_ref="2"/></pre>	
<target< td=""><td><pre>transient_grid_ref="2"/></pre></td></target<>	<pre>transient_grid_ref="2"/></pre>	
<timeste< td=""><td>ep></td></timeste<>	ep>	
	<source/> 24	
	<target>l</target>	
	<coupling_period operation="accumulate">24</coupling_period>	
	<source_timelag>0</source_timelag>	
	<target_timelag>0</target_timelag>	

- Created new driver for mHM-YAC coupling
- Replace meteorological data in every time-step
- New development in mHM: "meteo-handler" to either read from interface or file

mhm_driver_yac.f90

```
TimeLoop: do while(.not. time_loop_finished)
call coupling_mhm_recv_meteo(L1_pre_yac, L1_tavg_yac, L1_pet_yac, L1_tmin_yac, L1_tmax_yac, &
                             L1_netrad_yac, L1_absvappress_yac, L1_windspeed_yac)
select case (processMatrix(5, 1))
  case(-1 : 0)
    call mhm_interface_run_do_time_step(L1_pre_yac=L1_pre_yac, L1_tavg_yac=L1_tavg_yac, &
                                        L1_pet_yac=L1_pet_yac)
```

Results

mhm_driver_yac.f90

coupling.xml

-tavg>				
ansient_couple transient_id="2">				
<source< td=""><td><pre>component_ref="2"</pre></td><td><pre>transient_grid_ref="2"/></pre></td></source<>	<pre>component_ref="2"</pre>	<pre>transient_grid_ref="2"/></pre>		
<target< td=""><td></td><td><pre>transient_grid_ref="2"/></pre></td></target<>		<pre>transient_grid_ref="2"/></pre>		
<timestep></timestep>				
	<source/> 24 <td>e></td>	e>		
	<target>l</target> <coupling_period operation="accumulate">24</coupling_period>			
	<source timelag=""/> 0			
	<target timelag="">0.</target>			

- Created new driver for mHM-YAC coupling
- Replace meteorological data in every time-step
- New development in mHM:
 "meteo-handler" to either
 read from interface or file

Results

Experiences & Challenges

- All required technical expertise was well represented
 - ° Implementation of YAC interface went smooth
 - ° All involved developers were highly commited
 - We made a successful run within one sprint
- Executing a coupled simulation of ICON and mHM is challenging
 - Executing modeller needs to have knowledge of configuring both models and the coupler
 - ° Simple overview on the components is not enough to run a successful coupling
- Administrative challenges:
 - ° Unclear project management practices for sprint members
 - $^{\circ}$ Are there guidelines from natESM?

Outlook & open questions

- There was no in-depth scientific evaluation of the coupling
 - ° Research projects could focus on the Ahr flood event:
 - How would the forecast of such an event profit from an online coupling that would allow the usage of higher resolved temporal data?
- Outlook
 - ° Obtain further funding for scientific projects making use of the coupling
 - ° mHM will get a new "meteo-handler" to make couplings like these easier

Thank you for your attention!

References

- Samaniego L., Kumar, R., and Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, <u>https://doi.org/10.1029/2008WR007327</u>
- Kumar, R., Samaniego, L., and Attinger, S. (2013): Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, <u>https://doi.org/10.1029/2012WR012195</u>
- Samaniego, L., Thober, S., Kumar, R. et al. (2018): Anthropogenic warming exacerbates European soil moisture droughts. Nature Clim Change 8, 421–426, <u>https://doi.org/10.1038/s41558-018-0138-5</u>
- Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M. (2016): YAC 1.2.0: new aspects for coupling software in Earth system modelling, Geosci. Model Dev., 9, 2755–2769, <u>https://doi.org/10.5194/gmd-9-2755-2016</u>
- Wan, H., Giorgetta, M. A., Zängl, G.et al. (2013): The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version, Geosci. Model Dev., 6, 735–763, <u>https://doi.org/10.5194/gmd-6-735-2013</u>