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• More physics: resolve the dominant mode of energy transport in the tropics (vertical), 
eddies in the ocean, ice-leads using laws of physics, realistic lower-boundary conditions 
in topography and land-cover

• Improved large scale circulation, process level air-sea interactions, (better) 
representation of extremes, information at scales relevant for impact on peoples life (eg. 
catchment scales) and on scales we observe the Earth -> linking to observations

• Scale interactions from local to global scale.. and back

• Less equations, less lines of code, less bugs, less assumptions and essentially simpler 
models, making them easier to understand

• Don’t underestimate: Inspiration , communication and beautiful pictures

Why simulating the earth system at kilometer-scale?



• Studies of convergence start to make sense

• Do we get consistent responses to perturbations - at least in sign and on climate 
regime scale?

• Ensembles: do we really sample uncertainty right with a large sample of 
structurally similar models? Do we get out-of-sample trajectories?

• Are current models overfitted and react too stable to perturbations?

• Fundamental questions: Will the rain forests collapse, will we see major circulation 
shifts, is the ITCZ structure stable, how will the monsoon margins change.. all hard 
to answer with current models, but very important questions.

• Simulating weather of past, present and future climates.

• Fascination of our planet. We can visualise phenomena, which we experience 
from our lives.

What are kilometer-scale earth system models useful for?
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Diverse ecosystem of machines

Systems ICON is currently running and tested on:

• levante@DKRZ: AMD x86 CPU and Nvidia A100 GPU

• PizDaint@CSCS: Intel x86 CPU and Nvidia P100 GPU

• juwels@JSC: AMD x86 CPU and Nvidia A100 GPU

• nec@DWD: NEC Aurora vector engine

• lumi@CSC: AMD x86 CPU and AMD MI250X GPU

• horeka@KIT: Intel x86 CPU and Nvidia A100 GPU



See also Hoefler et al. 2023

Intensity increases as Δ𝑥−3, throughput as Δ𝑥−1 .
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Compute power increased by a factor 1 Mio, we want to use it

New technologies are more energy efficient (5-10x for ICON)
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Atmosphere (including land)

New technologies are more energy efficient (5-10x for ICON)
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GPUs to rule them all?

• Porting large codes is non-trivial 

•Getting GPU enabled code run performant is non-trivial 

•GPU is not GPU

•GPU porting only makes sense for very compute-intensive codes/simulations

• All-or-nothing: data transfer between CPUs and GPUs can counteract all performance gains

• Loosely coupled components can still benefit



Heterogeneous configurations

• Porting large codes is non-trivial 

•Getting GPU enabled code run performant is non-trivial 

•GPU is not GPU

•GPU porting only makes sense for very compute-intensive codes/simulations

• All-or-nothing: data transfer between CPUs and GPUs can counteract all performance gains

• Loosely coupled components can still benefit through different compute architectures
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Heterogeneous configurations - example

DestinE scenario run on Lumi-G (30 years at 5km)

• 128 nodes: atmosphere and land running on GPUs

• 28 nodes: ocean running on the CPUs of the GPU nodes

• 2 nodes: I/O processes running on CPUs of GPU nodes, coupled via YAC



Heterogeneous configurations

• Porting large codes is non-trivial 

•Getting GPU enabled code run performant is non-trivial 

•GPU is not GPU

•GPU porting only makes sense for very compute-intensive codes/simulations

• All-or-nothing: data transfer between CPUs and GPUs can counteract all performance gains

• Loosely coupled components can still benefit

C
P

U

G
P

U

Ocean Atmosphere

Working in progress

Potential speed-up and increased 
energy efficiency, could work across 
several components



Earth system complexity

Hohenegger et al. 2023



Earth system complexity



• About 1 Mio lines of (mostly) Fortran code

• 1000 Fortran source files (300 with OpenACC directives)

• A atmosphere only configuration in ‘production’ on (NVIDIA) GPUs since 2020

• All (almost) computations on GPUs -> speed up about 6

• Part Lumi procurement benchmarks

• Good collaboration with vendors (HPE and AMD) and compute centre (CSC)

Moving ICON to Lumi



Earth system complexity



Ocean Bio-geochemistry 



Philipp Weiss, University of Oxford

Interactive aerosols



Philipp Weiss, University of Oxford

Interactive aerosols



Handling the waterfall of data



ICON YAC coupled hiopy Zarr

Good data is written once and read often

Think about data sets: new approaches (for our community) enable the agile analysis of massive and diverse 
data.



HEALPix (Hierarchical Equal Area isoLatitude Pixelation of a sphere)

Orders of magnitude in speed up in typical analysis… never a slow down



Technical challenges for km-scale earth system models - summary

• Everything needs attention around the model (grids, boundary conditions, input data, output, 
processing, etc.)

• Everything needs attention in the model, performance degrades very quickly, especially on 
GPUs

•Using GPUs efficiently is complicated and not helpful

• Components (weakly coupled) can be run on different parts of the machine

➡ Tricky to set it up (software stack, slurm)

• Data sets need thought and need to be created in a usable way

➡ Solutions exist and should be adopted by our community
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