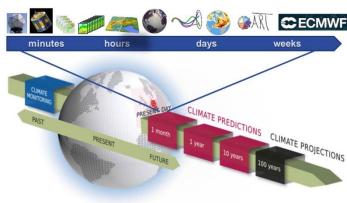
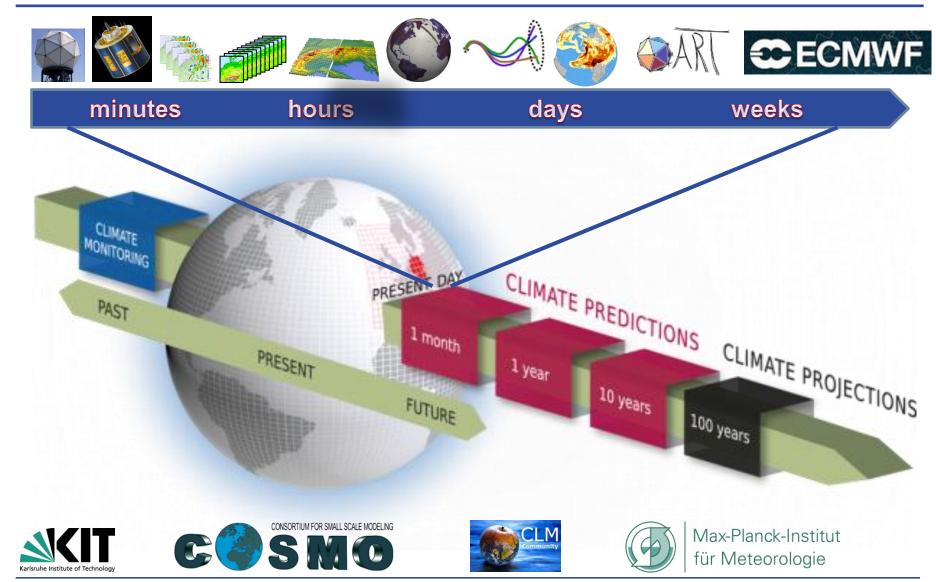

Sarah Jones Detlev Majewski, Barbara Früh, Christina Köpken-Watts Tobias Fuchs, Roland Potthast, Günther Zängl and many others


$$\begin{array}{llll} \partial_{t} v_{n} & + \left(\zeta + f\right) v_{t} & + \partial_{n} K + w \, \partial_{z} v_{n} & = & - \, c_{pd} \theta_{v} \partial_{n} \pi \\ \partial_{t} w & + \vec{v}_{h} \cdot \nabla w & + w \, \partial_{z} w & = & - \, c_{pd} \theta_{v} \partial_{z} \pi - g \\ \partial_{t} \rho & + \nabla \cdot \left(\vec{v} \rho \right) & = & 0 \\ \partial_{t} (\rho \theta_{v}) + \nabla \cdot \left(\vec{v} \rho \theta_{v} \right) & = & 0 \end{array}$$



- for probabilistic seamless warnings and forecasts at very short time and space scales (SINFONY)
- for reliable and affordable renewable energy
- as a leading meteorological provider for aviation in Europe
- for an Integrated Greenhouse Gas Monitoring System in support of UNFCCC reporting
- for reliable assessment of seasonal, decadal and long-term climate trends
- for climate services in DAS & GFCS

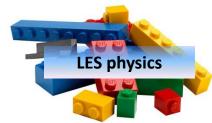
DWD

The ICON Modelling Framework – an exciting opportunity for research and operations

grid generation

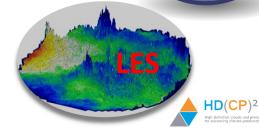
one- & two-way nesting

nh dyn. core

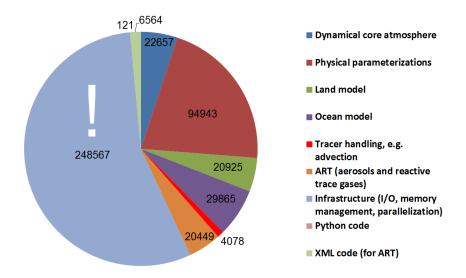

tracer module

hybrid parallelization

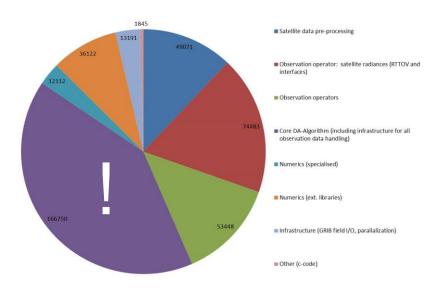
GRIB & NetCDF


ocean & sea ice module

NWP

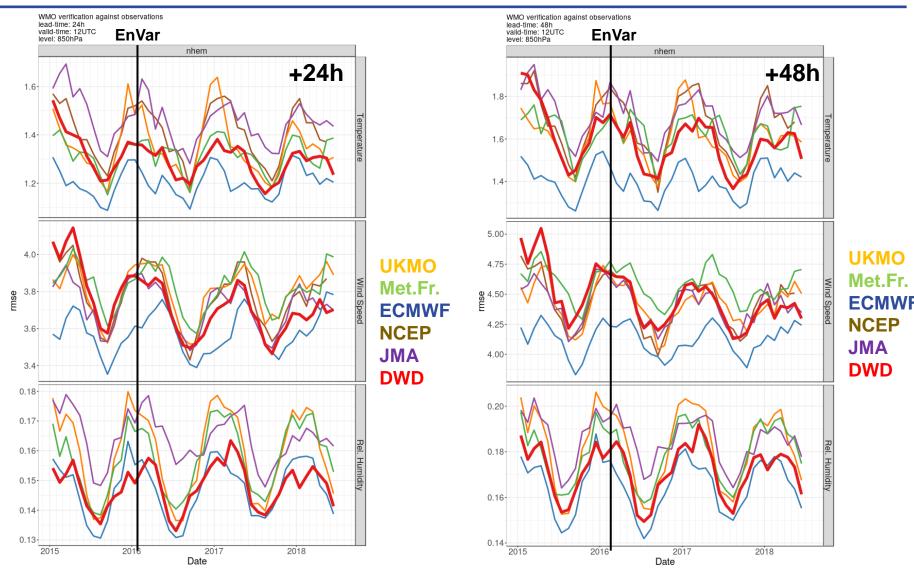

Important ICON-A (atmosphere) design features

- Unified modelling system for NWP and climate prediction / projection in order to bundle knowledge and to maximize synergy
- Nonhydrostatic dynamical core to enable seamless prediction
- Mass conservation, mass consistent tracer advection
- Up-to-date physics packages, e.g. RRTM, tile approach
- Global and limited area mode; one-way and two nesting options
- Shallow and deep atmosphere options
- Scalability and efficiency on O(10⁴+) cores; hybrid MPI / OpenMP parallelization



ICON ~ 445.000

DACE ~ 425.000


Global / regional seamless ICON-Modelling Framework and DACE: EnVar & LETKF assimilation code Logical lines (code statements) as of August 2018

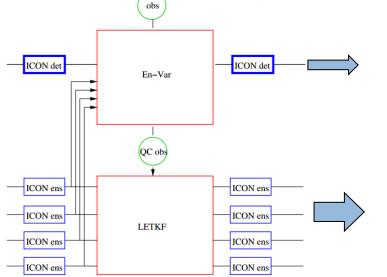
Estimated cost of code development for ICON (2004-2018: 2500 PM) **Based on the Constructive Cost Model (COCOMO)** Estimated cost of ICON code development: 12 Mill. Euro

Verification of global forecasting systems against radiosonde observations for the northern hemisphere 2015 to 2018

The operational NWP system of DWD in 2018

B

R

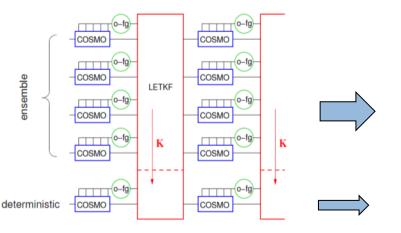

E

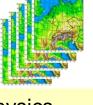
G

Deterministic and probabilistic analyses and forecasts on *global* and *regional* scales

EnVAR Hybrid DA-System

Global **Ensemble** Data **Assimilation ICON-EDA** 40 members 40/20 km


ICON deterministic 13 / 6.5 km (Europe)


Global Ensemble Prediction System ICON-EPS 40 members 40 / 20 km (Europe)

Regional **Ensemble** Data **Assimilation KENDA** 40 members 2.2 km

Regional Ensemble Prediction System COSMO-D2-EPS 20 members 2.2 km

Physics perturbations

COSMO-D2 deterministic 2.2 km

Climate forecasts and projections

Monthly Outlook

user tailored climate services based on monthly forecasts from **ECMWF**

Seasonal forecasts

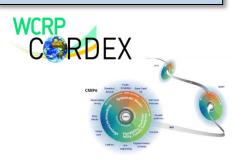
routine provision of seasonal forecasts with **German Climate Forecast** System (GCFS) in collaboration with Universität Hamburg, MPI-M, **C3S**

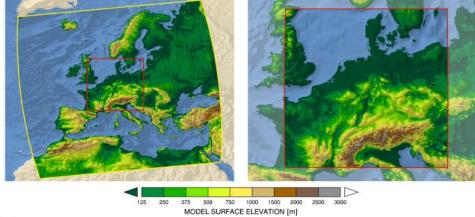
Decadal forecasts

BMBF research project Miklip II until Oct 2019, routine provision of global decadal climate forecasts from 2020

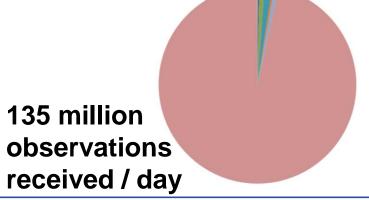
Climate projections

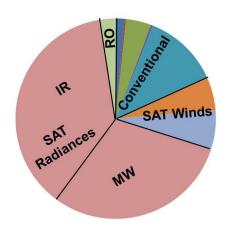
contribution to (global) CMIP6 & (regional) **CORDEX** in collaboration with DKRZ and MPI-M & CLM-Community

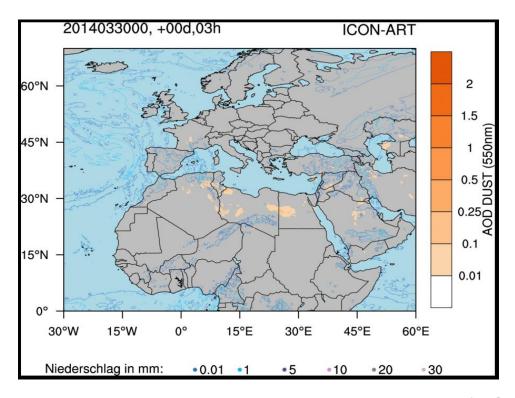




Data Assimilation / Regional Reanalysis






4,7 million used / day (after QC, thinning)

Emergency Response / Environmental Prediction System

ICON-ART for global and regional dispersion of mineral dust, volcanic ash, radioactive particles and pollen.

Forecast of the dispersion of mineral dust forecast (AOD 550 nm

Future additional ICON application modes at DWD

- ICON-LAM replacing COSMO-D2 as regional forecasting system
- Long range (one-month) forecasts
- Seasonal (up to three months) forecasts (currently based on ECHAM6 and MPI-OM)
- Decadal prediction (currently based on ECHAM6 and MPI-OM)
- Climate projections
- Integrated greenhouse gas monitoring system (ITMS for ICOS)
- Regional re-analyses (atmosphere only and coupled)

Examples of research projects and partners

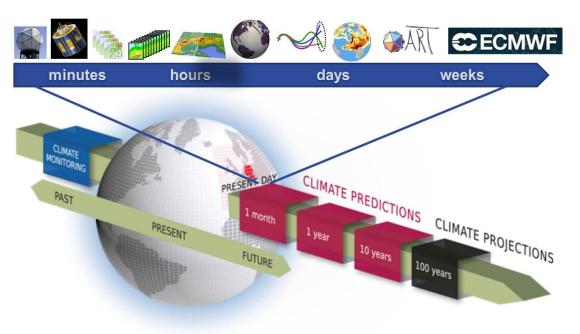
- Further development of the ICON Modelling Framework together with MPI-M, KIT and DKRZ
- Climate Limited-area **Modelling Community** to ICON-LAM (Limited Area Mode of ICON)
- Adapt ICON to emerging and future hardware architectures while addressing the issue of performance portability
- Hans Ertel Centre:

Data Assimilation @ LMU; Reanalysis @ Uni Bonn / Köln; Model Development @ MPI-M/Uni Hamburg & Uni Frankfurt

and many more

Platform for Advanced Scientific Computing

COSMO, COSMO-CLM and ICON **Worldwide distribution**



ICON Modelling Framework

$$\begin{array}{llll} \partial_t \boldsymbol{v_n} & + \left(\zeta + f\right) \boldsymbol{v_t} & + \partial_n K + w \, \partial_z \boldsymbol{v_n} & = & - \, c_{pd} \theta_v \partial_n \pi \\ \partial_t \boldsymbol{w} & + \, \vec{v_h} \cdot \nabla w & + \, w \, \partial_z w & = & - \, c_{pd} \theta_v \partial_z \pi - g \\ \partial_t \boldsymbol{\rho} & + \nabla \cdot \left(\vec{v} \boldsymbol{\rho} \right) & = & 0 \\ \partial_t \left(\boldsymbol{\rho} \boldsymbol{\theta_v} \right) + \nabla \cdot \left(\vec{v} \boldsymbol{\rho} \boldsymbol{\theta_v} \right) & = & 0 \end{array}$$

