
NATESM GPU SESSION
DKRZ USERWORKSHOP
13 October 2022 Andreas Herten, Kaveh Haghighi-Mood Forschungszentrum Jülich

Member of the Helmholtz Association

Outline

Infrastructure
CUDA Fortran

Basics
CUF Kernels
Libraries in Fortran (cuTENSOR)
Limitations

ISO Standard Fortran with GPUs

OpenACC
Ressources, Conclusion

Member of the Helmholtz Association 13 October 2022 Slide 1 25

Exercises on Levante

Everyone should have personal account on Levante!
Please use own budgeting allocation (i.e. Slurm’s --account, like kg0166)
Our course environment: Shortcuts to normalizework in this hands-on session
Please login to Levante and source course environment:
$ account=kg0166 source /scratch/workshop/source-levante.sh

(Replace kg0166with your budget.)

Available afterwards
material-sync command to sync material to $HOME (also: material-sync-force)
Pre-populated make run target in exercises which will submit jobs to Slurm
Loaded environment modules: nvhpc

Member of the Helmholtz Association 13 October 2022 Slide 2 25

Fortran vs. CUDA Fortran
Fortran

program testVecAdd
use mathOps
implicit none

integer, parameter :: N = 40000
real :: a(N)

a = 10.0
call vecAdd(a,1.0)
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd
end module mathOps

Member of the Helmholtz Association 13 October 2022 Slide 3 25

Fortran vs. CUDA Fortran
CUDA Fortran

program testVecAdd
use mathOps
use cudafor
implicit none

integer, parameter :: N = 40000
real :: a(N)
real,device :: a_d(N)
integer tBlock, grid

a = 10.0
a_d = a
tBlock = 256
grid = ceiling(real(N)/tBlock)
call vecAdd<<<grid,tBlock>>>(a_d,1.0)
a = a_d
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains
attributes(global) subroutine vecAdd(a,b)
implicit none

real :: a(:)
real,value :: b
integer :: i, n

n = size(a)
i= blockDim%x*(blockIdx%x-1)+threadIdx%x
if (i=<n) then
a(i)=a(i)+b

endif

end subroutine vecAdd
end module mathOps

Member of the Helmholtz Association 13 October 2022 Slide 4 25

CUDA Fortran Basics
Datamanagement

Fortran enabled for CUDA
device attribute−→ declare variables in the device memory
managed attribute−→ declare unified memory arrays
Standard Fortran array assignment−→ data copies between host and device + sync
Standard Fortran allocate and deallocate−→ for both host and device allocations

CUDA API calls−→memory copy functions (cudaMemcpy, cudaMemcpy2D,...) are also
available
Scalars−→ CUDA runtime responsibility, if passed by value

Member of the Helmholtz Association 13 October 2022 Slide 5 25

CUDA Fortran Basics
Kernel launch

Fortran enabled for CUDA
triple chevron notation:
call kernel<<<grid,block[,bytes][,streamid]>>>(arg1,arg2,...)
attributes(global)−→mark kernel subroutines
use cudafor−→ CUDA Fortran types (blockDim%x, blockIdx%x)

Like in CUDA C: replace loops with bound checks
Extend launch parameters to 2 or 3 dimensions: use dim3 derived type:
type(dim3) :: gridDim, blockDim

blockDim = dim3(32,32,1)
gridDim = dim3(ceiling(real(NN)/tBlock%x), ceiling(real(NM)/tBlock%y), 1)
call calcKernel<<<gridDim,blockDim>>>(A_dev,Anew_dev)

Member of the Helmholtz Association 13 October 2022 Slide 6 25

Task: Simple CUDA Fortran
Scale Vector

In this exercise, we’ll scale a vector (array) of single-precision numbers by a scalar.
Location: CUDA-Fortran/tasks/scale_vector
Operation: yi = α ∗ xi
Look at Instructions document, pick either Unified Memory version or explicit version
Make sure to have the Levante setup sourced, source levante-setup.sh in the root!

TASK

Member of the Helmholtz Association 13 October 2022 Slide 7 25

Important Notes

use cudafor necessary for CUDA Fortran types
Fortran array notation: use only for simple data transfers, not complicated calculations
Only one device array is allowed on right hand side. Following statement is not legal:
A = C_dev+ B_dev
CUDA Fortran source: .cuf or .CUF extension; or add -cuda to compiler flags

Member of the Helmholtz Association 13 October 2022 Slide 8 25

Task: (Little) Advanced CUDA Fortran
Jacobi solver with explicit kernel

Location: CUDA-Fortran/tasks/jacobi-explicit
Operation: yi,j = (xi+1,j + xi−1,y + xi,j+1 + xi,j−1)/4
Look at Instructions document
Make sure to have the Levante setup sourced,
source levante-setup.sh in the root!

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary
Point
Stencil

TASK

Member of the Helmholtz Association 13 October 2022 Slide 9 25

CUF Kernels (Kernel Loop Directive)
Overview

Tomany loops? Reductions? Writing kernels is difficult?
Compiler can write kernels for you, using !$CUF directive
!$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>
do i=1,N

do j=1,M
do k=1,P
...

enddo
endo

enddo

Member of the Helmholtz Association 13 October 2022 Slide 10 25

CUF Kernels
Options

Compiler can choose launch parameters, if ”*” is used for launch configuration
n parameter after do denotes the minimum depth of nested loops
Limits

do loops must have invariant loop limits
goto or exit statements not allowed
Array syntax not allowed

Member of the Helmholtz Association 13 October 2022 Slide 11 25

Task: CUF Kernels
Jacobi Solver with Kernel Loop Directives

Location: CUDA-Fortran/tasks/jacobi-cuf
Look at Instructions document
Compare results with explicit kernel version

TASK

Member of the Helmholtz Association 13 October 2022 Slide 12 25

Libraries in Fortran
cuTENSOR Example

NVHPC provides pre-made Fortran interfaces to CUDA libraries, like cuBLAS, cuFFT,
cuRand, cuSPARSE,…
→ docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/
Also, special extensions for Fortran in cuTENSOR: cutensorEx
nvfortran compiler canmap Fortran intrinsic natively to cuTENSOR
Nearly zero efforts for acceleration of matmul, transpose, reshape functions!
Just add use cutensorEx and recompile with -cudalib=cutensor!

Member of the Helmholtz Association 13 October 2022 Slide 13 25

https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html

Task: cuTENSOR Library
Fortran Array Intrinsics using Tensor Cores

Location: CUDA-Fortran/tasks/matmul-cutensor
Different example (because Tensor Cores): Matrix Multiplication
Look at Instructions document
Compare the calculation time with and without the cuTENSOR

Results on JUWELS Booster (GFLOP/s):
Size 8192 16 384

Naive CUDA sharedmem implementation 1945 2205
cuTENSOR 16 083 16 435

TASK

Member of the Helmholtz Association 13 October 2022 Slide 14 25

Task: cuTENSOR Library
Fortran Array Intrinsics using Tensor Cores

Location: CUDA-Fortran/tasks/matmul-cutensor
Different example (because Tensor Cores): Matrix Multiplication
Look at Instructions document
Compare the calculation time with and without the cuTENSOR
Results on JUWELS Booster (GFLOP/s):

Size 8192 16 384

Naive CUDA sharedmem implementation 1945 2205
cuTENSOR 16 083 16 435

TASK

Member of the Helmholtz Association 13 October 2022 Slide 14 25

CUDA Fortran Limitations

Not portable; only Nvidia GPUs
Only via Nvidia HPC SDK (formerly known as PGI) and IBM XL Fortran compilers
For some CUDA libraries, need to write interfaces
Small community

Member of the Helmholtz Association 13 October 2022 Slide 15 25

ISO Standard Fortran with GPUs
Non-standard libraries, directives or language extensions are not attractive enough?
Standard portable acceleration is possible now!
Fortran 2008 do concurrent supported by nvfortran and Intel oneAPI 2022.3:
subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do concurrent (i = 1: n)

a(i)=a(i)+b
enddo

end subroutine vecAdd

Member of the Helmholtz Association 13 October 2022 Slide 16 25

ISO Standard Fortran with GPUs
Non-standard libraries, directives or language extensions are not attractive enough?
Standard portable acceleration is possible now!
Fortran 2008 do concurrent supported by nvfortran and Intel oneAPI 2022.3:
subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do concurrent (i = 1: n)

a(i)=a(i)+b
enddo

end subroutine vecAdd

Member of the Helmholtz Association 13 October 2022 Slide 16 25

ISO GPU Details
You are responsible for correctness
Data transfer: Compiler and runtime env
Additional -stdpar compilation flag necessary

-stdpar=multicore Compile for CPU
-stdpar=gpu,multicore Compile for GPU or CPU

Definition: do concurrent (...) [locality-spec]
Locality options: local(list), local_init(list), share(list)
Nested loop example:
do i = 1, n

do j =1,m
C(i,j)=a(i)+b(j)

enddo
enddo

do concurrent (i = 1: n, j=1: m)
C(i,j)=a(i)+b(j)

enddo

Member of the Helmholtz Association 13 October 2022 Slide 17 25

ISO GPU Details
You are responsible for correctness
Data transfer: Compiler and runtime env
Additional -stdpar compilation flag necessary

-stdpar=multicore Compile for CPU
-stdpar=gpu,multicore Compile for GPU or CPU
Definition: do concurrent (...) [locality-spec]
Locality options: local(list), local_init(list), share(list)

Nested loop example:
do i = 1, n

do j =1,m
C(i,j)=a(i)+b(j)

enddo
enddo

do concurrent (i = 1: n, j=1: m)
C(i,j)=a(i)+b(j)

enddo

Member of the Helmholtz Association 13 October 2022 Slide 17 25

ISO GPU Details
You are responsible for correctness
Data transfer: Compiler and runtime env
Additional -stdpar compilation flag necessary

-stdpar=multicore Compile for CPU
-stdpar=gpu,multicore Compile for GPU or CPU
Definition: do concurrent (...) [locality-spec]
Locality options: local(list), local_init(list), share(list)
Nested loop example:
do i = 1, n

do j =1,m
C(i,j)=a(i)+b(j)

enddo
enddo

do concurrent (i = 1: n, j=1: m)
C(i,j)=a(i)+b(j)

enddo

Member of the Helmholtz Association 13 October 2022 Slide 17 25

Task: ISO GPU
Jacobi Solver with do concurrent

Location: STD-Fortran/tasks/jacobi-std
Look at Instructions document
Compare results with explicit and CUF kernel versions

TASK

Member of the Helmholtz Association 13 October 2022 Slide 18 25

OpenACC
High-level programmingmodel for GPUs et al.
Similar to OpenMP, but better GPU support earlier
OpenACC: more descriptive compared to OpenMP
Needed: OpenACC-capable compiler; NVIDIA HPC SDK, GCC, Clang

Directives Overview:
parallel Start parallel region

loop Create loop parallelism; usually parallel loop combination
kernels Accelerate a full region, with much leeway for compiler

data Create region for which data is transferred to and resides on GPU
All directives have clauses (options), like
!$acc parallel loop reduction(max:C) gang vector copy(A)

→ www.openacc.org/specification

Member of the Helmholtz Association 13 October 2022 Slide 19 25

https://www.openacc.org/specification

OpenACC
High-level programmingmodel for GPUs et al.
Similar to OpenMP, but better GPU support earlier
OpenACC: more descriptive compared to OpenMP
Needed: OpenACC-capable compiler; NVIDIA HPC SDK, GCC, Clang
Directives Overview:
parallel Start parallel region

loop Create loop parallelism; usually parallel loop combination
kernels Accelerate a full region, with much leeway for compiler

data Create region for which data is transferred to and resides on GPU

All directives have clauses (options), like
!$acc parallel loop reduction(max:C) gang vector copy(A)

→ www.openacc.org/specification

Member of the Helmholtz Association 13 October 2022 Slide 19 25

https://www.openacc.org/specification

OpenACC
High-level programmingmodel for GPUs et al.
Similar to OpenMP, but better GPU support earlier
OpenACC: more descriptive compared to OpenMP
Needed: OpenACC-capable compiler; NVIDIA HPC SDK, GCC, Clang
Directives Overview:
parallel Start parallel region

loop Create loop parallelism; usually parallel loop combination
kernels Accelerate a full region, with much leeway for compiler

data Create region for which data is transferred to and resides on GPU
All directives have clauses (options), like
!$acc parallel loop reduction(max:C) gang vector copy(A)

→ www.openacc.org/specification

Member of the Helmholtz Association 13 October 2022 Slide 19 25

https://www.openacc.org/specification

OpenACC
High-level programmingmodel for GPUs et al.
Similar to OpenMP, but better GPU support earlier
OpenACC: more descriptive compared to OpenMP
Needed: OpenACC-capable compiler; NVIDIA HPC SDK, GCC, Clang
Directives Overview:
parallel Start parallel region

loop Create loop parallelism; usually parallel loop combination
kernels Accelerate a full region, with much leeway for compiler

data Create region for which data is transferred to and resides on GPU
All directives have clauses (options), like
!$acc parallel loop reduction(max:C) gang vector copy(A)

→ www.openacc.org/specification

Member of the Helmholtz Association 13 October 2022 Slide 19 25

https://www.openacc.org/specification

OpenACC Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

!$acc data copyout(y(1:N)) create(x(1,N))

sum = 0.0;
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop
do i = 1, N

y(i) = i*x(i)+y(i)
end do
!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 13 October 2022 Slide 20 25

Task: OpenACC
Jacobi Solver with do concurrent

Location: OpenACC/tasks/
Look at Instructions document
Compare results to other experiments

TASK

Member of the Helmholtz Association 13 October 2022 Slide 21 25

Exercises on Levante

Everyone should have personal account on Levante!
Please use own budgeting allocation (i.e. Slurm’s --account, like kg0166)
Our course environment: Shortcuts to normalizework in this hands-on session
Please login to Levante and source course environment:
$ account=kg0166 source /scratch/workshop/source-levante.sh

(Replace kg0166with your budget.)

Available afterwards
material-sync command to sync material to $HOME (also: material-sync-force)
Pre-populated make run target in exercises which will submit jobs to Slurm
Loaded environment modules: nvhpc

Member of the Helmholtz Association 13 October 2022 Slide 22 25

Ressources, Conclusion

Resources

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
CUDA Fortran Porting Guide
CUDA Fortran Programming Guide and Reference
Examples:
NVHPC-INSTALLDIR/arch/version/examples
Intel OneAPI 2022.3 Release Notes
AMD’s gpufort (source-to-source converter to OpenMP)

Member of the Helmholtz Association 13 October 2022 Slide 24 25

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/ROCmSoftwarePlatform/gpufort

Conclusion

Many ways to use Fortran with Nvidia GPUs, all with NVHPC
CUDA Fortran
CUF Kernels
Libraries
ISO Standard
OpenACC

Few ways to use Fortran with other GPUs

Member of the Helmholtz Association 13 October 2022 Slide 25 25

Conclusion

Many ways to use Fortran with Nvidia GPUs, all with NVHPC
CUDA Fortran
CUF Kernels
Libraries
ISO Standard
OpenACC

Few ways to use Fortran with other GPUs

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 13 October 2022 Slide 25 25

mailto:a.herten@fz-juelich.de

Appendix

References: Images, Graphics I

[1] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

Member of the Helmholtz Association 13 October 2022 Slide 2 2

	Outline
	Infrastructure
	CUDA Fortran
	Basics
	CUF Kernels
	Libraries in Fortran (cuTENSOR)
	Limitations

	ISO Standard Fortran with GPUs
	OpenACC
	Ressources, Conclusion
	Appendix
	Appendix
	References

	References

