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Exercises on Levante

Everyone should have personal account on Levante!
Please use own budgeting allocation (i.e. Slurm’s --account, like kg0166)
Our course environment: Shortcuts to normalizework in this hands-on session
Please login to Levante and source course environment:
$ account=kg0166 source /scratch/workshop/source-levante.sh

(Replace kg0166with your budget.)

Available afterwards
material-sync command to sync material to $HOME (also: material-sync-force)
Pre-populated make run target in exercises which will submit jobs to Slurm
Loaded environment modules: nvhpc
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Fortran vs. CUDA Fortran
Fortran

program testVecAdd
use mathOps
implicit none

integer, parameter :: N = 40000
real :: a(N)

a = 10.0
call vecAdd(a,1.0)
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd
end module mathOps
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Fortran vs. CUDA Fortran
CUDA Fortran

program testVecAdd
use mathOps
use cudafor
implicit none

integer, parameter :: N = 40000
real :: a(N)
real,device :: a_d(N)
integer tBlock, grid

a = 10.0
a_d = a
tBlock = 256
grid = ceiling(real(N)/tBlock)
call vecAdd<<<grid,tBlock>>>(a_d,1.0)
a = a_d
print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps
contains
attributes(global) subroutine vecAdd(a,b)
implicit none

real :: a(:)
real,value :: b
integer :: i, n

n = size(a)
i= blockDim%x*(blockIdx%x-1)+threadIdx%x
if (i=<n) then
a(i)=a(i)+b

endif

end subroutine vecAdd
end module mathOps
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CUDA Fortran Basics
Datamanagement

Fortran enabled for CUDA
device attribute−→ declare variables in the device memory
managed attribute−→ declare unified memory arrays
Standard Fortran array assignment−→ data copies between host and device + sync
Standard Fortran allocate and deallocate−→ for both host and device allocations

CUDA API calls−→memory copy functions (cudaMemcpy, cudaMemcpy2D,...) are also
available
Scalars−→ CUDA runtime responsibility, if passed by value
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CUDA Fortran Basics
Kernel launch

Fortran enabled for CUDA
triple chevron notation:
call kernel<<<grid,block[,bytes][,streamid]>>>(arg1,arg2,...)
attributes(global)−→mark kernel subroutines
use cudafor−→ CUDA Fortran types (blockDim%x, blockIdx%x)

Like in CUDA C: replace loops with bound checks
Extend launch parameters to 2 or 3 dimensions: use dim3 derived type:
type(dim3) :: gridDim, blockDim

blockDim = dim3(32,32,1)
gridDim = dim3(ceiling(real(NN)/tBlock%x), ceiling(real(NM)/tBlock%y), 1)
call calcKernel<<<gridDim,blockDim>>>(A_dev,Anew_dev)
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Task: Simple CUDA Fortran
Scale Vector

In this exercise, we’ll scale a vector (array) of single-precision numbers by a scalar.
Location: CUDA-Fortran/tasks/scale_vector
Operation: yi = α ∗ xi
Look at Instructions document, pick either Unified Memory version or explicit version
Make sure to have the Levante setup sourced, source levante-setup.sh in the root!

TASK
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Important Notes

use cudafor necessary for CUDA Fortran types
Fortran array notation: use only for simple data transfers, not complicated calculations
Only one device array is allowed on right hand side. Following statement is not legal:
A = C_dev+ B_dev
CUDA Fortran source: .cuf or .CUF extension; or add -cuda to compiler flags
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Task: (Little) Advanced CUDA Fortran
Jacobi solver with explicit kernel

Location: CUDA-Fortran/tasks/jacobi-explicit
Operation: yi,j = (xi+1,j + xi−1,y + xi,j+1 + xi,j−1)/4
Look at Instructions document
Make sure to have the Levante setup sourced,
source levante-setup.sh in the root!

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary
Point
Stencil

TASK
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CUF Kernels (Kernel Loop Directive)
Overview

Tomany loops? Reductions? Writing kernels is difficult?
Compiler can write kernels for you, using !$CUF directive
!$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>
do i=1,N

do j=1,M
do k=1,P
...

enddo
endo

enddo
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CUF Kernels
Options

Compiler can choose launch parameters, if ”*” is used for launch configuration
n parameter after do denotes the minimum depth of nested loops
Limits

do loops must have invariant loop limits
goto or exit statements not allowed
Array syntax not allowed
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Task: CUF Kernels
Jacobi Solver with Kernel Loop Directives

Location: CUDA-Fortran/tasks/jacobi-cuf
Look at Instructions document
Compare results with explicit kernel version

TASK
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Libraries in Fortran
cuTENSOR Example

NVHPC provides pre-made Fortran interfaces to CUDA libraries, like cuBLAS, cuFFT,
cuRand, cuSPARSE,…
→ docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/
Also, special extensions for Fortran in cuTENSOR: cutensorEx
nvfortran compiler canmap Fortran intrinsic natively to cuTENSOR
Nearly zero efforts for acceleration of matmul, transpose, reshape functions!
Just add use cutensorEx and recompile with -cudalib=cutensor!
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Task: cuTENSOR Library
Fortran Array Intrinsics using Tensor Cores

Location: CUDA-Fortran/tasks/matmul-cutensor
Different example (because Tensor Cores): Matrix Multiplication
Look at Instructions document
Compare the calculation time with and without the cuTENSOR

Results on JUWELS Booster (GFLOP/s):
Size 8192 16 384

Naive CUDA sharedmem implementation 1945 2205
cuTENSOR 16 083 16 435

TASK
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CUDA Fortran Limitations

Not portable; only Nvidia GPUs
Only via Nvidia HPC SDK (formerly known as PGI) and IBM XL Fortran compilers
For some CUDA libraries, need to write interfaces
Small community
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ISO Standard Fortran with GPUs
Non-standard libraries, directives or language extensions are not attractive enough?
Standard portable acceleration is possible now!
Fortran 2008 do concurrent supported by nvfortran and Intel oneAPI 2022.3:
subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do concurrent (i = 1: n)

a(i)=a(i)+b
enddo

end subroutine vecAdd

Member of the Helmholtz Association 13 October 2022 Slide 16 25



ISO Standard Fortran with GPUs
Non-standard libraries, directives or language extensions are not attractive enough?
Standard portable acceleration is possible now!
Fortran 2008 do concurrent supported by nvfortran and Intel oneAPI 2022.3:
subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)
do concurrent (i = 1: n)

a(i)=a(i)+b
enddo

end subroutine vecAdd

Member of the Helmholtz Association 13 October 2022 Slide 16 25



ISO GPU Details
You are responsible for correctness
Data transfer: Compiler and runtime env
Additional -stdpar compilation flag necessary

-stdpar=multicore Compile for CPU
-stdpar=gpu,multicore Compile for GPU or CPU

Definition: do concurrent (...) [locality-spec]
Locality options: local(list), local_init(list), share(list)
Nested loop example:
do i = 1, n

do j =1,m
C(i,j)=a(i)+b(j)

enddo
enddo

do concurrent (i = 1: n, j=1: m)
C(i,j)=a(i)+b(j)

enddo
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Task: ISO GPU
Jacobi Solver with do concurrent

Location: STD-Fortran/tasks/jacobi-std
Look at Instructions document
Compare results with explicit and CUF kernel versions

TASK
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OpenACC
High-level programmingmodel for GPUs et al.
Similar to OpenMP, but better GPU support earlier
OpenACC: more descriptive compared to OpenMP
Needed: OpenACC-capable compiler; NVIDIA HPC SDK, GCC, Clang

Directives Overview:
parallel Start parallel region

loop Create loop parallelism; usually parallel loop combination
kernels Accelerate a full region, with much leeway for compiler

data Create region for which data is transferred to and resides on GPU
All directives have clauses (options), like
!$acc parallel loop reduction(max:C) gang vector copy(A)

→ www.openacc.org/specification
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OpenACC Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

!$acc data copyout(y(1:N)) create(x(1,N))

sum = 0.0;
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop
do i = 1, N

y(i) = i*x(i)+y(i)
end do
!$acc end parallel loop
!$acc end data
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Task: OpenACC
Jacobi Solver with do concurrent

Location: OpenACC/tasks/
Look at Instructions document
Compare results to other experiments

TASK
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Exercises on Levante

Everyone should have personal account on Levante!
Please use own budgeting allocation (i.e. Slurm’s --account, like kg0166)
Our course environment: Shortcuts to normalizework in this hands-on session
Please login to Levante and source course environment:
$ account=kg0166 source /scratch/workshop/source-levante.sh

(Replace kg0166with your budget.)

Available afterwards
material-sync command to sync material to $HOME (also: material-sync-force)
Pre-populated make run target in exercises which will submit jobs to Slurm
Loaded environment modules: nvhpc
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Ressources, Conclusion



Resources

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
CUDA Fortran Porting Guide
CUDA Fortran Programming Guide and Reference
Examples:
NVHPC-INSTALLDIR/arch/version/examples
Intel OneAPI 2022.3 Release Notes
AMD’s gpufort (source-to-source converter to OpenMP)
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https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/ROCmSoftwarePlatform/gpufort


Conclusion

Many ways to use Fortran with Nvidia GPUs, all with NVHPC
CUDA Fortran
CUF Kernels
Libraries
ISO Standard
OpenACC

Few ways to use Fortran with other GPUs
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Thank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix



References: Images, Graphics I

[1] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.
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