

1

Sprint documentation #06

ESMValTool Sprint

Jörg Benke1 and Birgit Hassler2

1Jülich Supercomputing Center, Jülich, Germany
2Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany

Contact: info@nat-esm.de

Published on 13.05.2024 on https://www.nat-esm.de/services/accepted-sprints

1 Summary

The primary objective of this sprint was to enhance the memory efficiency of ESMValTool. This

was pursued by systematically integrating Dask functions across the preprocessing chain and

replacing NumPy arrays with appropriate Dask arrays. By leveraging Dask's out-of-core

computing capabilities, operations are executed on smaller data chunks (which are smaller than

memory) instead of loading entire arrays into memory at once. This "lazy evaluation" approach

(chunks are only loaded on demand and computation on this data then will be executed)

optimizes memory usage and accelerates processing steps, enabling computations larger than

available memory. Furthermore, utilizing Dask's distributed schedulers facilitates easy

distribution of computations across multiple nodes on HPC systems. While progress was made in

porting ESMValTool for single-node execution, full testing across multiple nodes was impeded by

time constraints.

2 General information

Start and end date: June 2023 – November 2023

Intended period: 6 months

Responsible RSE: Jörg Benke (JSC)

Responsible scientist: Birgit Hassler (DLR)

The Earth System Evaluation Tool (ESMValTool) is an open-source software package for the

evaluation and analysis of output from Earth System Models (ESMs) that facilitates comparisons

of single or multiple models, either against results from predecessor versions or against

reanalysis datasets and observations. All output created by ESMValTool is assigned a provenance

record that allows for traceability of the results by providing information on input data used,

processing steps, diagnostics applied, and software versions used. ESMValTool version 2, released

for the first time in 2020, has been optimized for handling the large data volume of the output

from CMIP6.

ESMValTool has initially been designed to process and analyze output from CMIP models and

observational data sets, but has now been extended to evaluate, analyze, or monitor simulations

from individual models such as ICON, providing preprocessing of forcing data for hydrological

models, and also include machine learning analysis methods. The large collection of diagnostics

mailto:info@nat-esm.de
https://www.nat-esm.de/services/accepted-sprints

2

and metrics implemented in ESMValTool include, for instance, a set of large-scale diagnostics for

quasi-operational and comprehensive evaluation of ESMs, diagnostics for extreme events,

regional model and impact evaluation and analysis of ESMs, as well as diagnostics for emergent

constraints and analysis of future projections from ESMs. As such, ESMValTool has been used for

contributions to several chapters of the Sixth Assessment Report (AR6) of the Intergovernmental

Panel on Climate Change (IPCC), in particular Chapter 3 of Working Group 1 on the human

influence on the climate system.

3 Sprint objectives

Making ESMValTool more memory efficient would be an important step for the ESM community,

since it enables ESMValTool to process output from high-resolution models and thus makes the

wide set of diagnostics available for model evaluation and development. This should be achieved

through the consequent application of Dask functions throughout the whole preprocessing chain

of ESMValTool. An additional aim was to make the ICON output fully UGRID-compliant within

ESMValTool during runtime to take advantage of more sophisticated regridding schemes.

A prerequisite to be able to process high-resolution simulations with ESMValTool is to optimize

the current memory usage of common preprocessing tasks such as vertical regridding, masking,

or calculation of derived variables. At the time of writing the sprint application, only about half of

the available preprocessing functions had been optimized by taking advantage of out-of-core

computation using Dask’s lazy arrays. That leaves many preprocessor functions still reading

whole datasets into memory for processing. With an increasing number and size of data files from

high-resolution simulations becoming available and model development generally moving

towards exascale computing, optimizing the memory usage of the remaining preprocessor

functions via Dask is increasingly important to prepare ESMValTool for future applications. This

was the main task of the sprint.

As a second objective of the sprint, the Dask schedulers executing the task graphs created with

the help of Dask Collections (in case of ESMValTool, mostly the Dask Array class is used) need to

be optimized for the specific problems they are implemented for to take full advantage of

distributed schedulers. This additional second step will allow for further improved memory

efficiency as well as open up the possibility to use more memory by using several nodes of an HPC

system and is thus a necessary future step towards getting ESMValTool ready for exascale

computing.

In a third step, the capability of ESMValTool to read and process unstructured grids was planned

to be extended, which is particularly relevant for processing data on unstructured grids.

4 Procedure and insights

4.1 Technical approach / procedure

The work of the sprint can be divided into three parts (see Section 3 of this document).

▪ Updating the remaining non-lazy preprocessor functions to use Dask’s lazy arrays

whenever possible (duration of this task was planned for 4 months). This was the main

task.

▪ Studying Dask distributed schedulers to be able to provide advice on how to further

improve memory management of ESMValCore, the core module of ESMValTool performs

the actual data processing (duration of this task was planned for 2-4 weeks).

▪ Updating ESMValCore so that ICON data can be made UGRID-compliant at runtime

(duration of this task was planned for 4 weeks).

The sprint started with getting familiar with ESMValTool. This was done via the tutorial at

https://tutorial.esmvaltool.org/ which is well organized and a good starting point for learning the

core concepts of ESMValTool. Another major source of information was the ESMValTool

https://tutorial.esmvaltool.org/

3

documentation page with a very detailed description of the tool or for example the workflow for

developers. The ESMValTool project repository is located at

https://github.com/ESMValGroup/ESMValTool and for ESMValCore this can be found at

https://github.com/ESMValGroup/ESMValCore (ESMValCore includes the preprocessor functions

the RSE had to work on). ESMValTool and ESMValCore support a full Continuous Integration

pipeline with for example linting, style checking, and unit and integration tests (via CircleCI).

The main goal of this sprint was to optimize the memory usage of common preprocessing tasks by

taking advantage of out-of-core computation using Dask’s lazy arrays instead of NumPy arrays

(see https://docs.dask.org/en/stable/array.html and https://docs.xarray.dev/en/v0.9.0/dask.html for

Dask arrays). Beside the NumPy library, another important and extensively used library for

ESMValCore and ESMValTool is the Iris library, which is a „Python package for analysing and

visualising Earth science data” (https://scitools-iris.readthedocs.io/en/stable/). Iris already

provides a large collection of high-level functions that are all based on Dask. The total RSEs

training period time was approximately 1.5 months (Recap of Python and getting familiar with

ESMValTool and ESMValCore, NumPy and Iris library).

The next step of the sprint was to work on making the preprocessor functions lazy which were not

available like this yet. All preprocessor functions that require some recoding or restructuring to

be made lazy with Dask (or based on Iris) are listed in a GitHub issue

(https://github.com/ESMValGroup/ESMValCore/issues/674). The first preprocessor category

which the RSE worked on was the masking preprocessors. The first examples to be worked on

were the preprocessors “mask_above_threshold”, “mask_below_threshold”, “mask_inside_range”

and “mask_outside_range” which mask out special regions where values are above or below a

defined threshold, as well as inside or outside of a defined region. These preprocessors were made

lazy by substituting NumPy arrays with Dask arrays (dask.array). This was done successfully,

and a test run for each preprocessor with a test scenario (on a single compute node of the Levante

supercomputer at DKRZ with 128 cores and 256 GB of RAM) revealed a significant reduction of

the runtime by more than a factor of four in some cases after optimizing these preprocessors in

ESMValCore (see Figure 1). In addition, the same evaluation can now be done on systems with

less memory than the input data size (this has been verified by performing the tests on a shared

node on Levante with only a small amount of memory specified). Before these optimizations are

implemented here, the evaluation would run out of memory under the same circumstances.

Figure 1: Runtimes of different ESMValTool preprocessor functions before (blue) and after

(orange) making the corresponding function lazy. In this example, one single preprocessor

function is applied to 65 years of daily 3D data of the CMIP6 model CanESM5. The tests were

performed on a single compute node on DKRZ’s Levante with 128 cores and 256 GB of RAM.

https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValCore
https://docs.dask.org/en/stable/array.html
https://docs.xarray.dev/en/v0.9.0/dask.html
https://scitools-iris.readthedocs.io/en/stable/
https://github.com/ESMValGroup/ESMValCore/issues/674

4

The process of making the next three preprocessor functions mask_landsea, mask_landseaice and

mask_glaciated (to mask out land, sea, ice and glaciated regions) more memory efficient was not

as straightforward than for the first four preprocessor functions: a simple function substitution

(from NumPy to Dask) was not successful, since Dask implements only a subset of the NumPy

array interface. For these three preprocessor functions, the code had to be rewritten to get them

more memory and runtime efficient. The tests after the successful porting showed a runtime

reduction of about 20-25% (see Figure 1) in these cases.

For the preprocessor mask_fillvalues (which masks multiple input data sets based on the

availability of data in the various data sets), much more work was needed to understand the

problem and the implemented solution, and how to rewrite it to get it lazy, since there is no direct

way to translate this function into Dask. Furthermore, some preprocessor functions were not

touched because an adaption of the Iris library was necessary for their porting, which was not

possible in the allocated time for the sprint.

Studying the Dask distributed schedulers to be able to provide advice on how to further improve

memory management of ESMValCore had been started but did not lead to further advices

regarding the improvement until the end of the sprint. Updating ESMValCore so that ICON data

can be made UGRID-compliant at runtime was not carried out because of time constraints.

4.2 General insights

First of all, it is to mention that ESMValTool is a very mature and sustainable software with a

very good continuous Integration workflow and a very active community. The idea of making the

preprocessors lazy and therefore more memory efficient with Dask, in addition to the already

extensively used Iris library, is a valid and good approach. Its successful implementation was

shown in the ported preprocessors which led to a significant improvement in memory usage and

runtime.

However, since the code has grown very complex since the change from ESMValTool version 1 to

version 2 and the learning curve especially for ESMValCore is very steep, it was not an easy task

for the involved RSE to get familiar with the software in a six-months sprint. Nevertheless, the

support from the DLR RSEs and scientists and the ESMValTool community was very good, and it

was a pleasure to work in this community.

5 Results

Several Preprocessors were ported successfully with/to Dask with a significant improvement of

memory usage and runtime.

6 Conclusions and Outlook

The idea to make all preprocessor functions lazy with Dask, in addition to the usage of the Iris

library, is a good and valid approach which was shown to be successful for the modified

preprocessor functions. There was a significant improvement in optimizing memory efficiency and

runtime for the ported functions. The work of this sprint will be continued in another project

(ESiWACE3) which is led by one of the core developers of ESMValTool.

7 References

1. GitHub Repository ESMValTool: https://github.com/ESMValGroup/ESMValTool

2. GitHub Repository ESMValCore: https://github.com/ESMValGroup/ESMValCore

3. ESMValTool Tutorial: https://tutorial.esmvaltool.org/

4. ESMValTool documentation page: https://docs.esmvaltool.org/en/latest/

5. Dask: https://www.dask.org/

6. Dask Tutorial: https://docs.dask.org/en/stable/

https://github.com/ESMValGroup/ESMValTool
https://github.com/ESMValGroup/ESMValCore
https://tutorial.esmvaltool.org/
https://docs.esmvaltool.org/en/latest/
https://www.dask.org/
https://docs.dask.org/en/stable/

5

7. Iris package: https://github.com/SciTools/iris

8. Iris Tutorials: https://scitools-iris.readthedocs.io/en/stable/

https://github.com/SciTools/iris
https://scitools-iris.readthedocs.io/en/stable/

