

1

Sprint documentation #5

MESSy Sprint

Enrico Degregori1 and Astrid Kerkweg2

1 Deutsches Klimarechenzentrum GmbH, Hamburg, Germany
2 Forschungszentrum Jülich, Jülich, Germany

Contact: info@nat-esm.de

Published on 27.06.23 on https://www.nat-esm.de/services/accepted-sprints

1 Summary

The Modular Earth Submodel System (MESSy) is a software project providing an infrastructure

for coupling atmospheric models (e.g., ICON, ECHAM, COSMO) and specialized ESM components,

the so-called submodels (e.g., physical parameterizations, chemistry packages, diagnostics) via

generalized interfaces for standardized control and coupling.

MESSy will be ported to GPU submodel wise. As MESSy contains some computationally expensive

process implementations, speedup on the process level can be taken as granted. However, if only

individual processes are ported, frequent copies of high amounts of data between host and device

will diminish the gain in speed substantially. In order to accelerate the model as soon and as much

as possible, i.e., already during the porting process, the data transfer between host and device needs

to be optimized, so that the speedup of individual code sections can be decoupled from the memory

update.

2 General information

Start and end date: 19.01.23 – 21.05.23

Intended period: 4 months

Responsible RSE: Enrico Degregori (DKRZ)

Responsible scientist: Astrid Kerkweg (FZJ-IEK8)

3 Sprint objectives

The sprint objective is the memory-transfer design from the base model to the submodels. The

following requirements have been considered.

1. Implement the data transfer within MESSy memory manager (CHANNEL) and then allow

other submodels to use the memory manager as a backend;

2. Minimize the changes needed for each submodel by the submodel developers and hide the

complexity of GPU memory allocation and data transfer within CHANNEL, TRACER and

TENDENCY. TRACER is a submodel to structure and manage information about tracers,

including the memory allocation, while TENDENCY is a submodel to trace process-based

tendencies of prognostic variables and it also works as an interface to access the tracers.

3. Minimize the data transfer between host and device (optimization).

mailto:info@nat-esm.de
https://www.nat-esm.de/services/accepted-sprints

2

4 Procedure and insights

4.1 Technical Approach / procedure

The work of the sprint was separated into two parts. First, the data transfer was designed and

implemented with applications to toy submodels. Then, the new implementation was applied to a

dwarf setup with realistic submodels.

In the first part, the data transfer was implemented within MESSy memory manager (CHANNEL),

and then an interface was created for TRACER and TENDENCY, which use CHANNEL as a

backend for the data transfer of tracers and prognostic variables. The data transfer was then

optimized using the "intent" of a field within a submodel (read, write, read/write) and its most

updated location (host or device). The “intent” needs to be explicitly specified by the user and the

default value is read/write, while the most updated location is internally recorded in the backend.

As a next step, the GPU memory allocation was minimized within TRACER, allowing the allocation

of a subset of the all tracer set. The assumption is that only a subset of all tracers might run on the

device, and thus only for those memory is allocated on the GPU. In order to do that, the tracers are

reordered once during the initialization (before the memory allocation) to have the GPU tracers

contiguous in memory (requirement of OpenACC standard).

In the second part of the sprint the implementation was applied to a realistic dwarf setup with

MECCA running on GPU and JVAL on CPU. The MECCA KPP solver was already ported on GPU

using CUDA but the data transfer concept requires that both the submodel core layer and the

submodel interface layer run on GPU. The MECCA interface layer was ported using OpenACC and

then an OpenACC/CUDA interface was created to call the CUDA version of the KPP solver.

4.2 General Insights

The data-transfer implementation requires to use always the memory manager in the backend, and

this allowed to improve the modularity of TRACER and TENDENCY submodels creating a cleaner

interface to CHANNEL.

The design requires an explicit definition of internal and coupling variables for GPU allocation and

memory transfer. This means that the allocated memory should never be accessed directly but

through CHANNEL which provides a pointer to the memory allocation. This concept is consistent

with the original MESSy design and it allows to detect some weaknesses or flaws in the submodels

modularization, which should be tackled during the integration of the new implementation. The

same applies to the tracers memory which should never be accessed directly but always through

TENDENCY.

The iteration over the linked list to update any single variable might introduce not negligible

overhead in a realistic setup. These overheads were not observed during the sprint but a possible

strategy to overcome the issue was already discussed. The idea is to create an additional layer in

the memory manager which introduces a mapping of the allocated channel objects once the

channel is fixated. This allows to avoid the iteration over the linked list for each memory update.

5 Results

The outcome of the sprint is the initial implementation of the data transfer between host and device

within the MESSy infrastructure. The basic idea is that before the submodel execution, each

submodel gets a pointer for each data field from CHANNEL and the data transfer is implicitly done

within the memory manager. In particular,

▪ … the memory is updated if necessary.

▪ … the most updated memory location (host or device) is internally recorded.

The tracers and prognostic variables memory is updated implicitly within TENDENCY, hiding the

complexity of the memory transfer from the submodels developers.

3

6 Conclusions and Outlook

The implementation was applied to two dwarf setups during the sprint, the first one with some toy

submodels and the second one with some realistic submodels such as JVAL and MECCA.

The next step is the design of the data transfer from the submodels to the base model at the end of

each MESSy entry point. The discussion about possible ideas was already started at the end of the

sprint, considering both ECHAM and ICON.

Once the data transfer is fully implemented within the MESSy framework, the final step is the

introduction of a base model towards a production setup. A natural choice would be the use of ICON

since it is ported to GPU, but in principle the implementation could be applied to any base model.

This would allow to test the flexibility of the design and possibly detect weaknesses or flaws.

7 References

A full documentation can be found on the MESSy-project wiki:

https://gitlab.dkrz.de/MESSy/MESSy/-/wikis/Data-transfer

Since it was not possible to have open access to the sprint development and related wiki, to get

access to the full documentation, please get in contact with Patrick Jöckel

(patrick.joeckel@dlr.de) .

https://gitlab.dkrz.de/MESSy/MESSy/-/wikis/Data-transfer
mailto:patrick.joeckel@dlr.de

