
ICON Community Interface „ICON ComIn“

What are the applications of ComIn?

Nils-Arne Dreier1, Kerstin Hartung*2, Patrick Jöckel2, Astrid Kerkweg3, Bastian Kern2, Mariano Mertens2, Florian Prill4, Daniel Reinert4, Daniel Rieger4

1Deutsches Klimarechenzentrum (DKRZ)
2Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre
3Forschungszentrum Jülich (FZJ), Institut für Energie- und Klimaforschung: Troposphäre/ Center for Advanced Simulation and Analytics (CASA)
4Deutscher Wetterdienst (DWD)
*kerstin.hartung@dlr.de

SUBROUTINE plugin_modA_setup(lrestart, comin_setup_version_info_out, ierr)

LOGICAL, INTENT(IN) :: lrestart

TYPE(t_comin_setup_version_info), INTENT(OUT) :: comin_setup_version_info_out

INTEGER, INTENT(OUT) :: ierr

INCLUDE “comin_version_info.f90”

comin_setup_version_info_out = comin_setup_version_info

ierr = 0

IF (comin_setup_version_info%version_no_major > 1) THEN

ierr = 1; RETURN

END IF

CALL get_comin_parallel_info(info)

CALL comin_setup_activate_plugin(pluginname, plugin_setup, wp, ierr)

IF (ierr /= 0) RETURN

CALL comin_request_add_var(t_comin_var_descriptor(jg = 1, &

& name = "myvariable"), t_comin_var_metadata(&

& ltracer = .FALSE., lmodexclusive = .FALSE., &

& lrestart = .FALSE., itype_vlimit = 1, &

& itype_hlimit = 4, is_3d_field = .TRUE.), ierr)

IF (ierr /= 0) RETURN

CALL comin_callback_register(EP_SECONDARY_CONSTRUCTOR, my_constructor, ierr)

CALL comin_callback_register(EP_BEFORE_WRITE_OUTPUT, my_diagfct, ierr)

p_patch => comin_descrdata_get_patch_grid_info(1)

END SUBROUTINE plugin_modA_setup

Primary constructor of plugin A

Secondary constructor of plugin A

SUBROUTINE my_constructor()

var_desc%name = 'press'

var_desc%jg = 1

CALL comin_var_get(EP_BEFORE_WRITE_OUTPUT, var_desc, FLAG_SYNCHRONIZED, press)

var_desc%name = 'temp’

CALL comin_var_get((/EP_SECONDARY_CONSTRUCTOR,EP_BEFORE_ADVECTION/), &

& var_desc, FLAG_SYNCHRONIZED, temp)

END SUBROUTINE my_constructor

Nth callback of plugin A

Entry point in ICON

SUBROUTINE my_diagfct()

WRITE (0,*) "data in callback:", press%ptr(1,1,1,1,1)

END SUBROUTINE my_diagfct

#ifdef HAVE_COMIN

!> example of a third-party entry point (callback)

CALL comin_callback_context_call(EP_BEFORE_ADVECTION)

#endif /* ifdef HAVE_COMIN */

Specifics of the adapter library (at least for v1.0)

Request POINTERs to ICON variables for specific entry points.
• ComIn interfaces are restricted to cell-based variables
• blocked, process-local variable arrays are exposed as they are stored in

ICON (information on location of vertical and blocking indices provided)
• multiple computational domains supported
• no variables with multiple time levels (instead POINTER swapping)
• plugins can READ, WRITE or READ/WRITE ICON variables, no safe-

guarding against “malicious” write access
• plugins cannot change restart flag to ICON’s standard fields
Plugins can also create additional variables (surface or 3D, tracers possible,
can be requested exclusively, registration for inclusion in restart files).

How are the descriptive data organized? How can ComIn be integrated into your application?

Schematic 1: The adapter library controls exchange of variables
between ICON and plugins connected via ComIn.

Schematic 2: Callbacks of plugins registered via ComIn
are called at specified entry points within ICON.

Descriptive data structures contain information on the ICON setup, the
computational grid(s), and the simulation status. They are part of the
adapter library.
• all descriptive data structures are read-only
• global data (e.g. Fortran KIND values, MPI communicator) and grid

information are available from the primary constructor
• simulation status available from the secondary constructor
• references (POINTERs) are preferred over values (copies),

efficiency vs. safe-guarding against “malicious” write access

Roadmap

1. Finish the prototype (standalone version) ~ Q2/23
2. Initiate an internal review phase
• interfaces, definition of entry points, documentation
• fill mockup with “real information” in ICON feature branch

3. Test use of ICON via ComIn in first test application(s).

Some further decisions, e.g. testing procedure for external modules, are
open.

… and what is ComIn?

The community interface organizes the inclusion of simulation events from
a plugin to ICON and sharing of data between the two. ComIn is not a
coupler but the interface controls what, how and when foreign functions
are called within ICON and data is exposed or exchanged. ComIn is actively
developed by DWD, DLR, DKRZ and FZJ with consultative contributions
from KIT.

Software prototype
• implemented in Fortran but interface design open for plugins in other

languages through ISO-C bindings
• ComIn requires publishing a small part of ICON data structures in

adapter library
• YAC adapter as one example ComIn plugin
• general aim: Open Source license

Build process

Using dynamic linking of plugins (recommended approach):
1. Build ICON ComIn.
2. Build plugins (linking against ComIn library).
3. Specify plugins for primary constructor in comin_nml. Generates

primary constructor calls automatically.
4. Build ICON with ComIn (--with-comin=${ICON_COMIN_DIR} during

configure).

How are callbacks organized?

Functions from plugins may be called at pre-defined events during a
model simulation. One CALL in ICON handles execution of all registered
plugins for one entry point. All function callbacks need to be registered
in the primary constructor.
• two entry points before the time loop (see details on the right)

• primary constructor
• secondary constructor (optional, needs to be registered in

primary constructor, called after allocation of ICON variable list
and before time loop)

• several entry points during the time loop
• all entry points above the “block loop level”

check own compatibility
with ComIn version

return ComIn version with
which this module was
built to ICON

request additional ICON
variable

register function callbacks

get descriptive data
structures, e.g. grid
information

get pointer to ICON
variable, updated at two
entry points with
READ/WRITE intent
(synchronized)

Alternative build process using statically linked libraries:
In the third step the plugin, which should be statically linked, is
not itself specified but ”icon” is set as plugin. This allows
(though with some effort) to link individual libraries statically to
ICON.

• version and compatibility handling (backward compatibility)
• adapter library

• read/write access to ICON variables
• descriptive data structures shared from ICON

(grid, parallelization info, simulation time stamp, ...)
• plugins can create additional variables

• callback register, definition of entry points
• build process (independent from ICON’s build process)

Design concept overview

First ideas for use cases of the ComIn generalized interface to ICON:
• connect ICON to e.g. wave model, chemistry components, ocean or land

model
• couple external models e.g. via YAC
• interface ICON variables with other frameworks, e.g. ECMWF's Atlas

library, and with other programming languages like C/C++
• embed Python scripts, execute during the simulation
• (interpolated) model I/O
• additional diagnostics

data access through
previously stored
POINTERs

one CALL for all plugins

preprocessor directives
encapsulate ComIn calls

register plugin

