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Course content

o

Why study uncertainty?

Earth-systems & Developing environmental models

Sources of uncertainty in environmental modelling

Review of statistical concepts & Data uncertainty

Gap-filling & Error propagation: Analytic approaches

Error propagation: Analytic approaches & Numerical methods
Uncertainty in praxis : Excursion to LRZ

Non-linear systems

Model parameter uncertainty

Model evaluation

Large ensembles/Scenario uncertainty

Downscaling & Data assimilation & Emergent constraints

DISCLAIMER

This lecture is based on the WS2019/20 course by Dr. Ana
Bastos, now professor at university of Leipzig.

Co-developed with Dr. Tammas Loughran (VL+P), expert
on massive climate modeling, extreme events, climate
variability.

Additional input stems from ETH colleagues Prof. Dr. Reto
Knutti (climate physics) and Prof. Dr. David Bresch

(weather and climate risks).

Latest add-ons by Prof. Julia Pongratz (WS20/21) and Dr.
Stefanie Falk (WS21/22-WS23/24).

In WS24/25 this lecture is given by Dr. Sabine Egerer.

Stefanie Falk (stefanie.falk@Imu.de)

WiSe 2023/24
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|L|V|U « . | Model uncertainties

Observations

Physical model

(varying uncertainty)

Dataset (compilation [ N EE S —————
of observations)

Numerical : Outputs

implementation : (predictions)

Evaluation

Inputs R -
(space & time) Black-box model

uncertain

"~ Stefanie Falk (stefanie.falk@Imu.de) WiSe 2023/24 3 I



IMU| G World of Ideas

World of ideas Reality Symbiosis Knowledge
Original - truth Imitation - realizations Empirical - Approximation of truth
(Urbild) (Abbild) Generalization
\
. Observe
> Platon 427 - 423 BCE
all horses
in the
world
eqﬁjmeguelp .cs*
/

Stefanie Falk (stefanie.falk@Imu.de) | | WiSe 2022/23



|L|V|U =x.. | What is “the environment”?

1. (environment)
The surroundings or conditions in which a person,
animal, or plant lives or operates.

“survival in an often hostile environment”

2. (the environment)

The natural world, as a whole or in a particular
geographical area, especially as affected by human
activity.

“the impact of pesticides on the environment”

nasa.gov

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24
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|L|V|U e I Model types

Empirical (“black-box”) G,:fgdbeﬁx Process-based (“white box”)
Pros: Pros:
* simplicity (processes, mathematics) e realistic representation
e |ess data/computing intensive e parameters can be measured or derived
e user-friendliness from experiments
e fast e obey fundamental physics

e theoretically do not need calibration

Cons.. no process understanding * can be generalised (“laws”)
e missing processes Cons:
e too crude approximations e mathematically complex
e strong need for calibration/validation e data/computing intensive

e generalisation might be dangerous * non-linearity

Result Input f(input) Result
) ) I

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24



|L|V|U = | Earth System Models

MUNCHEN

 Models are always simplifications of the processes g Earth as a Complex Interrelated System
occurring in nature

* Model development necessarily involves making
decisions / choices;

* Model choice needs to consider trade-offs
(e.g. computing power, spatial scale...)

* Uncertainty quantification (if possible) is
fundamental to guide model choice and
development.

| | | | | | |
nasa.gov, cesm.ucar.edu

adapted

"~ Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24 7 I
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HLMU <. | Sources of uncertainty

* From errors in input data:
> Measurements
> Production of datasets
> Processing for model input

In principle quantifiable

% From calibration of model parameters (but not al )
ut not always

¢ From numerical implementation

% From the interactions between the above terms

% But also from system simpilification, In principle not
approximations and missing processes. quantifiable

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24



HLMU = | Statistical concepts

MUNCHEN

e Statistics allow characterising distributions of
variables, and making inferences about large

populations from smaller samples (e.g. election polls) HHRTII | |

Y \
 Statistic analysis of measurements / observations ..T‘FFH?‘.",""ff'_if_,“_.|’ h"l'j‘fa_' _____ ‘—”]||ﬁﬁﬁf"'ﬁf’ffm_'\
allows quantifying uncertainty and identifying v L |H ‘Fﬁ’ﬁh‘
5 haas
potential measurements errors |H msson €———> | Exponential
el R T A R \
* Bayes’ Theorem allows quantifying how much we | l
o o Log Norma Weibull
learn about a given process by a given ;
. A o (G':z;';‘;h) —> | Chi‘squared
information/observation. L4 -
Student’s t W
Gamma
8%
Beta
b b bb bb towardsdatascience.com

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24
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|L|V|U Gap f"lmg

e Gaps exist because of
e System / instrument malfunction

e Data corruption / poorly recorded data Reynold’s decomposition
e Social / financial limitations
[}

(industrial strike/war) 27 .
e Gaps should be filled because 20° u - data
e Some analysis methods require complete data O 187
* Gaps reduce robustness of analysis L 16 u’ - fluctuation
* Easier comparison to dynamical model data T 1, /\/\ T - mean /\/\
* Forcing dynamical models §12- \/\/\/\/ VAV g
e Simple gap filling methods = \/ 3
* Single imputation: replace missing values with single 27 g
value 81 e
* Multiple imputation: replace missing valueswith 77 6 03 1o 17 i 31 07 14
multiple values
e Reynold’s decomposition for reconstruction of 1995 .
ozone concentrations Time
Stefanie Falk (stefanie.falk@Imu.de) WiSe 2023/24 10



S Sy, - Lorenz Attractor
* Boundary conditions and initial conditions

define the chaotic behavior of a system.

* Initial conditions are most effective on short
and medium time scales.

* Qver longer time boundary conditions will
define the development of the system.

20

10

20

10

0 5 0 g

Zachary G. Nicolaou et al. (arXiv, 2023)

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24 11
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|LMU « .. | Model ensembles

An ensemble is a group of model integrations of the same model with different initial
AND/OR boundary conditions OR of different models.

NINO3.4 SST anomaly plume

NINO3.4 SST anomaly plume EUROSIP multi-model forecast from 1 Sep 2019
ECMWF forecast from 1 Sep 2019 ECMWF, Met Office, Météo-France, NGEP, JMA P
Monthly mean anomalies relative to NCEP OIv2 1981-2010 climatology 2 Monthly mean anomalies relative fo NCEP Olv2 1981-2010 dimatology
——System 5 §
£
)
(/2]
i — L
o ] i (@) =
S g =
S T 2
E 0 . 2 <
< < 3
S
c
pe
1 L 3
®
Mar Apr May Jun th(;1gug "Sep Oct Nov Dec Jan Feb Mar Apr May Mar Apr May Jun J112|01A909 Sep Oct Nov Dec Jan Feb Mar Apr May °
[72]
ECMWEF ECMWEF g
+ UK Met Office + NCEP g
Long range (seasonal) forecast o 3
+ Météo-France + JMA
Stefanie Falk (stefanie.falk@imu.de) 2 WiSe 2023/24 19



MU e Error propagation: Analytical

More generally, we can define _
a multivariate distribution: Q — f(x; VrZy .o, Tl)
.

Q = [l ysHzs s ) Y

J

If errors are correlated:

2 2 2
5 aQ) ¢ (3Q) 7 (aQ ; (BQ) (aQ
o5 = ( .0% + .05 + .o+ - + 20
Q [ x/y, - oy w y 0z/)y, . XY \ax/ \oy

+20,; (32) (32) + ..
2

Variances: 0%, 0%y, 0%, ..., O*n

cov(X, Y) =

Covariances: o(x,y), o(y,x), o(x,z), o(z,x), ...,
o(x,n), o(n,x), ...

Stefanie Falk (stefanie.falk@Imu.de) WiSe 2023/24 13 I



||_|V|U wiee | EFror propagation: Numerical

MUNCHEN

* Developing “white-box” models often requires solving
differential equations;

Runge-Kutta Method

* Numerical methods can be used to approximate

* The RK-4 Method requires more calculations at each
point (weighted average of the slope between two
points), but is more accurate.

E
solutions for initial value problems, especially for oo K, | ;’
complex equations (or systems of DEs); | | | =

- |

* Numerical approximations always involve errors | | = :*i'- : e
“truncation errors”; K| f;_fn;' L ——»6| g
U .

* The Euler Method approximates the solution by a | | s L £
straight line at each point of a discrete interval, but the | i Qﬁ’\ Kz
error is high for sparse intervals; - h - g
= Xip1/2 Xi1 x E

[HEY
S

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24
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|LMU .. | Down scaling

e Dynamic Downscaling + RCM simulations

e Empirical-Dynamic Downscaling and transfer
functions

e Disaggregation Methods (spatial + temporal)

e Hybrid Downscaling Approaches

RCM resolution
(e.g. 50 x 50 km)

A\

Regional climate

Station \

Fine resolution Change g:enanos
; (e.g. 1 x 1 km)
Local climate
change scenarios
=3 Dynamical = Empirical-dynamical Disaggregation == Output

Fig. 2. Schematic of the outputs of dynamic downscaling, empirical-dynamic downscaling and disaggregation
downscaling methods when applied to GCM simulations. The products from the downscaling can be gridded f elds
of climate variables at a range of spatial scales or climate scenarios for specif ¢ locations. Different approaches to
downscaling can be applied, as shown by the colored arrows. Also, multiple downscaling steps can be used to
obtain the desired spatial resolution (RCM, regional climate model; GCM, global climate model).

Winkler et al (2011)

Stefanie Falk (stefanie.falk@Imu.de)

WiSe 2023/24 15



|LMU .. IModel parameter errors

¢ Black-box models rely on empirical relationships
between variables derived from observations;

Linear regression

20 A

e The required sample size to achieve a given
uncertainty can be estimated;

e Coefficients of model fitting are always uncertain,
since data is uncertain;

10

Dependent variable (y)

e OLS approaches work well for linear problems with
normal errors;

e For more complex problems, Bayesian Regression
is a powerful tool.

Independent variable (x)

Stefanie Falk (stefanie.falk@lmu.de) WiSe 2023/24 16
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« . | Model evaluation

1. Model fit y = f(X,5)

3. Evaluate predictions

R? ® F-stat
RMSE e F-statp

e p ofindividual params.* e BIC

Vary parameters / f <]
A |
| I
I no
|
ncertainty
acceptable?
o | yes
e AIC

Use model

‘ Stefanie Falk

(stefanie.falk@Imu.de)

WiSe 2023/24
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|LMU e | SCcenario uncertainties

"1 3 different qualities of uncertainties:
1) Internal climate variability that we cannot influence

1) Model (ESM and IAM) uncertainty that we can try to

reduce <

(but unavoidable errors due to truncation etc will §

always persist) §
1) Scenario uncertainty, likelihoods are harder to assign,

prediction almost impossible

(Which technology will be available? How does the

political landscape look like?).

This is ongoing field of research, but important for
adaptation and mitigation.

140

120

100

[0}
o

(o))
o

H
=

-20
20

00

2020

2040

2080 2100

Riahi et al. (2017)

Stefanie Falk (stefanie.falk@Imu.de) WiSe 2022/23
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|LMU Data assimilation

i , t, t., time

Observations Observations Observations

{ i ! ..

Forecast I Forecast

* Kalman filter I k I
* Optimal interpolation >

* 3D-VAR

\ - . -
* PSAS

* 4D-VAR
* Extended Kalman Filtering

based on ECWMF - E-learning

"~ Stefanie Falk (stefanie.falk@Imu.de) WiSe 2023/24
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|LMU =0 | EMergent constraints

If observations are available, then future model projections might be weighted in order to favor those models
better matching observations, and penalize those further away.

This has been attempted for the global ecosystem C balance, by constraining models with sensitivity of CO,
growth rate to tropical temperature

& b
‘;\ 0 = ‘vx — ; - — i 0025 R
O b > 0.020F -
5 =50}k ; I = 2 i posterior
< Mg 5 | |
< L S 0.015F ]
= _100k [ | SxB ] 2 : |
o —-100 = S
S S 3 0.010f :
E | S8 #é 3 I
g oY 2 2 % 1 < oo00sf :
g ! L ‘ : -
o w00t 1.l . . \L‘ 0.000¢ . .
0 5 10 15 -200 -150 -100 -50 0 50
Sensitivity of CO, growth rate (GtC yr' K-7) Climate impact, y, ; (GtC K™') Cox et al. (Nature, 2023)
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