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Outline 

 This lecture: 

 Basic concepts of performance analysis 

 Sampling & Instrumentation 

 Profiling & Tracing 

 Performance analysis with Score-P 

 Tool overview 

 

 Next lecture (25.01.2016) 

 Trace analysis in detail 

 Automatic analysis with Scalasca 

 Manual analysis with Vampir 
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Motivation 

Make it work, 

make it right, 

make it fast. 
 

       Kent Beck 

Premature 

optimization is the 

root of all evil. 
 

       Donald E. Knuth 

If you optimize 

everything, you will 

always be unhappy.  
 

       Donald E. Knuth 
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Today: the “free lunch” is over 

■ Moore's law is still in charge, but 

■ Clock rates no longer increase 

■ Performance gains only through 

increased parallelism 

■ Optimizations of applications more 

difficult 

■ Increasing application complexity 

■ Multi-physics 

■ Multi-scale 

■ Increasing machine complexity 

■ Hierarchical networks / memory 

■ More CPUs / multi-core 

Every doubling of scale reveals a new bottleneck! 
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Performance factors of parallel applications 

■ “Sequential” factors 

■ Computation 

Choose right algorithm, use optimizing compiler 

■ Vectorization 

 Especially important on many-core architectures 

■ Cache and memory 

Tough! Only limited tool support, hope compiler gets it 

right 

■ Input / output 

Often not given enough attention 
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Performance factors of parallel applications 

■ “Parallel” factors 

■ Partitioning / decomposition 

 Load balancing 

■ Communication (i.e., message passing) 

■ Multithreading 

■ Synchronization / locking 

 More or less understood, good tool support 
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Tuning basics 

■ Successful engineering is a combination of 

■ The right algorithms and libraries 

■ Compiler flags and directives 

Thinking !!! 

 

■ Measurement is better than guessing 

■ To determine performance bottlenecks 

■ To compare alternatives 

■ To validate tuning decisions and optimizations 

After each step! 
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Performance engineering workflow 

■ Prepare application (with symbols), 

insert extra code (probes/hooks) 

■ Collection of data relevant to 

execution performance analysis 

■ Calculation of metrics, identification 

of performance metrics 

■ Presentation of results in an 

intuitive/understandable form 

■ Modifications intended to eliminate/reduce 

performance problems 

Preparation 

Measurement 

Analysis 

Examination 

Optimization 
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The 80/20 rule 

■ Programs typically spend 80% of their time in 20% of 

the code 

Know what matters! 

 

■ Developers typically spend 20% of their effort to get 

80% of the total speedup possible for the application 

Know when to stop! 

 

■ Don't optimize what does not matter 

Make the common case fast! 
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Classification of measurement techniques 

■ How are performance measurements triggered? 

■ Sampling 

■ Code instrumentation 

 

■ How is performance data recorded? 

■ Profiling / Runtime summarization 

■ Tracing 

 

■ How is performance data analyzed? 

■ Online 

■ Post mortem 

10 
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Sampling 

■ Running program is periodically interrupted 

to take measurement 

■ Timer interrupt, OS signal, or HWC overflow 

■ Service routine examines return-address stack 

■ Addresses are mapped to routines using 

symbol table information 

■ Statistical inference of program behavior 

■ Not very detailed information on highly 

volatile metrics 

■ Requires long-running applications 

■ Works with unmodified executables 

Time 

main foo(0) foo(1) foo(2) 

int main() 

{ 

  int i; 

 

  for (i=0; i < 3; i++) 

    foo(i); 

 

  return 0; 

} 

 

void foo(int i) 

{ 

 

  if (i > 0) 

    foo(i – 1); 

 

} 

Measurement 
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Instrumentation 

Time 

Measurement 

■ Measurement code is inserted such that 

every event of interest is captured directly 

■ Can be done in various ways 

■ Advantage: 

■ Much more detailed information 

■ Disadvantage: 

■ Processing of source-code / executable 

necessary 

■ Large relative overheads for small functions 

int main() 

{ 

  int i; 

 

  for (i=0; i < 3; i++) 

    foo(i); 

 

  return 0; 

} 

 

void foo(int i) 

{ 

 

  if (i > 0) 

    foo(i – 1); 

 

} 

Time 
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main foo(0) foo(1) foo(2) 

Enter(“main”); 

Leave(“main”); 

Enter(“foo”); 

Leave(“foo”); 
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Instrumentation techniques 

■ Static instrumentation 

■ Program is instrumented prior to execution 

■ Dynamic instrumentation 

■ Program is instrumented at runtime 
 

■ Code is inserted 

■ Manually 

■ Automatically 

■ By a preprocessor / source-to-source translation tool 

■ By a compiler 

■ By linking against a pre-instrumented library / runtime 

system 

■ By binary-rewrite / dynamic instrumentation tool 
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Critical issues 

■ Accuracy 

■ Intrusion overhead 

■ Measurement itself needs time and thus lowers 

performance 

■ Perturbation 

■ Measurement alters program behaviour 

■ E.g., memory access pattern 

■ Accuracy of timers & counters 

■ Granularity 

■ How many measurements? 

■ How much information / processing during each 

measurement? 
 

Tradeoff: Accuracy vs. Expressiveness of data 
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Profiling / Runtime summarization 

■ Recording of aggregated information 

■ Total, maximum, minimum, … 

■ For measurements 

■ Time 

■ Counts 

■ Function calls 

■ Bytes transferred 

■ Hardware counters 

■ Over program and system entities 

■ Functions, call sites, basic blocks, loops, … 

■ Processes, threads 

 

Profile = summarization of events over execution interval 
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Tracing 

■ Recording information about significant points (events) during 

execution of the program 

■ Enter / leave of a region (function, loop, …) 

■ Send / receive a message, … 

■ Save information in event record 

■ Timestamp, location, event type 

■ Plus event-specific information (e.g., communicator, 

sender / receiver, …) 

■ Abstract execution model on level of defined events 

 

Event trace = Chronologically ordered sequence of 

   event records 
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Event tracing 

void foo() { 

   

  ... 

   

  send(B, tag, buf); 

  ... 

   

} 

Process A 

void bar()  { 

   

  ... 

  recv(A, tag, buf); 

   

  ... 

   

} 

Process B 

MONITOR 

MONITOR 

s
y
n

c
h

ro
n

iz
e

(d
) 

void bar() { 

  trc_enter("bar"); 

  ... 

  recv(A, tag, buf); 

  trc_recv(A); 

  ... 

  trc_exit("bar"); 

} 

void foo() { 

  trc_enter("foo"); 

  ... 

  trc_send(B); 

  send(B, tag, buf); 

  ... 

  trc_exit("foo"); 

} 

instrument 

Global trace view  

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

merge 

unify 

1 foo 

2 bar 

... 

58 ENTER 1 

62 SEND B 

64 EXIT 1 

... 

... 

Local trace A 

Local trace B 

foo 1 

... 

bar 1 

... 

60 ENTER 1 

68 RECV A 

69 EXIT 1 

... 

... 
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Tracing vs. Profiling 

■ Tracing advantages 

■ Event traces preserve the temporal and spatial 

relationships among individual events ( context) 

■ Allows reconstruction of dynamic application behaviour on 

any required level of abstraction 

■ Most general measurement technique 

■ Profile data can be reconstructed from event traces 

■ Disadvantages 

■ Traces can very quickly become extremely large 

■ Writing events to file at runtime causes perturbation 

■ Writing tracing software is complicated 

■ Event buffering, clock synchronization, ... 
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Online analysis 

■ Performance data is processed during measurement run 

■ Process-local profile aggregation 

■ More sophisticated inter-process analysis using 

■ “Piggyback” messages 

■ Hierarchical network of analysis agents 

■ Inter-process analysis often involves application steering to 

interrupt and re-configure the measurement 
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Post-mortem analysis 

■ Performance data is stored (at end) of measurement run 

■ Data analysis is performed afterwards 

■ Automatic search for bottlenecks 

■ Visual trace analysis 

■ Calculation of statistics 
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Typical Performance Analysis Procedure 

■ Do I have a performance problem at all? 

■ Time / speedup / scalability measurements 

■ What is the key bottleneck (computation / communication)? 

■ MPI / OpenMP / flat profiling 

■ Where is the key bottleneck? 

■ Call-path profiling, detailed basic block profiling 

■ Why is it there? 

■ Hardware counter analysis 

■ Trace selected parts (to keep trace size manageable) 

■ Does the code have scalability problems? 

■ Load imbalance analysis, compare profiles at various 

sizes function-by-function, performance modeling 
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Remark: No Single Solution is Sufficient! 

A combination of different methods, tools and techniques 

is typically needed! 

■ Analysis 

■ Statistics, visualization, automatic analysis, data mining, ... 

■ Measurement 

■ Sampling / instrumentation, profiling / tracing, ... 

■ Instrumentation 

■ Source code / binary, manual / automatic, ... 
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Score-P 

 Community instrumentation and measurement 

infrastructure 

 Developed by a consortium of performance 

tool groups 

 

 

 Next generation measurement system of 

 Scalasca 2.x 

 Vampir 

 TAU 

 Periscope 

 Common data formats improve tool interoperability 

 http://www.score-p.org 
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Score-P Overview 
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 Collection of trace-based performance analysis tools 

 Specifically designed for large-scale systems 

 Unique features: 

 Scalable, automated search for event patterns 

representing inefficient behavior 

 Scalable identification of the critical execution path 

 Delay / root-cause analysis 

 Based on Score-P for instrumentation and measurement 

 Includes convenience / post-processing commands 

providing added value 

 http://www.scalasca.org 
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What is the Key Bottleneck? 

 Generate flat MPI profile using Score-P/Scalasca (or mpiP) 

 Only requires re-linking 

 Low runtime overhead 

 

 Provides detailed information on MPI usage 

 How much time is spent in which operation? 

 How often is each operation called? 

 How much data was transferred? 

 

 Limitations: 

 Computation on non-master threads and outside 

of MPI_Init/MPI_Finalize scope ignored 
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Flat MPI Profile: Recipe 

1. Prefix your link command with 

 “scorep --nocompiler” 
 

2. Prefix your MPI launch command with 

 “scalasca -analyze” 
 

3. After execution, examine analysis results using 

 “scalasca -examine scorep_<title>” 
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Flat MPI Profile: Example 

% module load UNITE scorep scalasca 
% mpixlf90 -O3 -qsmp=omp -c foo.f90 
% mpixlf90 -O3 -qsmp=omp -c bar.f90 
% scorep --nocompiler \ 
    mpixlf90 -O3 –qsmp=omp -o myprog foo.o bar.o 
 
########################## 
##  In the job script:  ## 
########################## 
 
module load UNITE scalasca 
scalasca -analyze \ 
    runjob --ranks-per-node P --np n [...] --exe ./myprog 
 
########################## 
## After job finished:  ## 
########################## 
 
% scalasca -examine scorep_myprog_Ppnxt_sum 
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Flat MPI Profile: Example (cont.) 

Aggregate 

execution time on 

master threads 

Time spent in a 

particular MPI 

call 

Time spent in 

selected call as 

percentage of 

total time 
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Where is the Key Bottleneck? 

 Generate call-path profile using Score-P/Scalasca 

 Requires re-compilation 

 Runtime overhead depends on application characteristics 

 Typically needs some care setting up a good measurement 

configuration 

 Filtering 

 Selective instrumentation 

 

 Option 1 (recommended): 

Automatic compiler-based instrumentation 

 

 Option 2: 

Manual instrumentation of interesting phases, routines, loops 
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Call-path Profile: Recipe 

1. Prefix your compile & link commands with 

 “scorep” 

2. Prefix your MPI launch command with 

 “scalasca -analyze” 

3. After execution, compare overall runtime with uninstrumented 

run to determine overhead 

4. If overhead is too high 

1. Score measurement using 

“scalasca -examine -s scorep_<title>” 

2. Prepare filter file 

3. Re-run measurement with filter applied using prefix 

“scalasca –analyze –f <filter_file>” 

5. After execution, examine analysis results using 

 “scalasca -examine scorep_<title>” 
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Call-path Profile: Example 

% module load UNITE scorep scalasca 
% scorep mpixlf90 -O3 -qsmp=omp -c foo.f90 
% scorep mpixlf90 -O3 -qsmp=omp -c bar.f90 
% scorep \ 
    mpixlf90 -O3 –qsmp=omp -o myprog foo.o bar.o 
 
 
 
########################## 
##  In the job script:  ## 
########################## 
 
module load UNITE scalasca 
scalasca -analyze \ 
    runjob --ranks-per-node P --np n [...] --exe ./myprog 
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Call-path Profile: Example (cont.) 

 Estimates trace buffer requirements 

 Allows to identify canditate functions for filtering 

Computational routines with high visit count 

and low time-per-visit ratio 

 Region/call-path classification 

 MPI (pure MPI library functions) 

 OMP (pure OpenMP functions/regions) 

 USR (user-level source local computation 

 COM (“combined” USR + OpeMP/MPI) 

 ANY/ALL (aggregate of all region types) 

% scalasca -examine -s epik_myprog_Ppnxt_sum 
scorep-score -r ./epik_myprog_Ppnxt_sum/profile.cubex 
INFO: Score report written to ./scorep_myprog_Ppnxt_sum/scorep.score 
 

USR 

USR 

COM 

COM USR 

USR MPI OMP 
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Call-path Profile: Example (cont.) 

% less scorep_myprog_Ppnxt_sum/scorep.score 
Estimated aggregate size of event trace:                   162GB 
Estimated requirements for largest trace buffer (max_buf): 2758MB 
Estimated memory requirements (SCOREP_TOTAL_MEMORY):       2822MB 
(hint: When tracing set SCOREP_TOTAL_MEMORY=2822MB to avoid 
 intermediate flushes or reduce requirements using USR regions 
 filters.) 
 
flt type    max_buf[B]        visits  time[s] time[%] time/     region 
                                                      visit[us] 
     ALL 2,891,417,902 6,662,521,083 36581.51   100.0      5.49  ALL 
     USR 2,858,189,854 6,574,882,113 13618.14    37.2      2.07  USR 
     OMP    54,327,600    86,353,920 22719.78    62.1    263.10  OMP 
     MPI       676,342       550,010   208.98     0.6    379.96  MPI 
     COM       371,930       735,040    34.61     0.1     47.09  COM 
 
     USR   921,918,660 2,110,313,472  3290.11     9.0      1.56  matmul_sub 
     USR   921,918,660 2,110,313,472  5914.98    16.2      2.80  binvcrhs 
     USR   921,918,660 2,110,313,472  3822.64    10.4      1.81  matvec_sub 
     USR    41,071,134    87,475,200   358.56     1.0      4.10  lhsinit 
     USR    41,071,134    87,475,200   145.42     0.4      1.66  binvrhs 
     USR    29,194,256    68,892,672    86.15     0.2      1.25  exact_solution 
     OMP     3,280,320     3,293,184    15.81     0.0      4.80  !$omp parallel 
     [...] 
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Call-path Profile: Filtering 

 In this example, the 6 most fequently called routines are 

of type USR 

 These routines contribute around 35% of total time 

 However, much of that is most likely measurement overhead 

 Frequently executed 

 Time-per-visit ratio in the order of a few microseconds 
 

 Avoid measurements to reduce the overhead 

 List routines to be filtered in simple text file 
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Filtering: Example 

 Score-P filtering files support 

 Wildcards (shell globs) 

 Blacklisting 

 Whitelisting 

 Filtering based on filenames 

% cat filter.txt 
SCOREP_REGION_NAMES_BEGIN 
    EXCLUDE 
        binvcrhs 
        matmul_sub 
        matvec_sub 
        binvrhs 
        lhsinit 
        exact_solution 
SCOREP_REGION_NAMES_END 
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Call-path Profile: Example (cont.) 

##  To verify effect of filter: 
 
% scalasca -examine -s -f filter.txt \ 
    scorep_myprog_Ppnxt_sum 
 
########################## 
##  In the job script:  ## 
########################## 
 
module load UNITE scalasca 
scalasca -analyze -f filter.txt \ 
    runjob --ranks-per-node P --np n [...] --exe ./myprog 
 
########################## 
## After job finished:  ## 
########################## 
 
% scalasca -examine scorep_myprog_Ppnxt_sum 
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Call-path Profile: Example (cont.) 
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Call-path Profile: Example (cont.) 

Distribution of 

selected metric 

across call tree 

 

When expanding, 

value changes 

from inclusive to 

exclusive Selection updates 

columns to the 

right 

Box plot view shows 

distribution across 

processes/threads 
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Call-path Profile: Example (cont.) 

Split base 

metrics into more 

specific metrics 
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Score-P: Advanced Features 

 Measurement can be extensively configured via 

environment variables 

 Check output of “scorep-info config-vars” 

for details 

 Allows for targeted measurements: 

 Selective recording 

 Phase profiling 

 Parameter-based profiling 

 … 

 Please ask us or see the user manual for details 
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Why is the Bottleneck There? 

 This is highly application dependent! 

 Might require additional measurements 

 Hardware-counter analysis 

 CPU utilization 

 Cache behavior 

 Selective instrumentation 

 Manual/automatic event trace analysis 
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Hardware Counters 

 Counters: set of registers that count processor events, e.g. 

floating point operations or cycles 

 Number of registers, counters and simultaneously measurable 

events vary between platforms 

  Can be measured by: 

 perf:  

 Integrated in Linux since Kernel 2.6.31 

 Library and CLI 

 LIKWID: 

 Direct access to MSRs (requires Kernel module) 

 Consists of multiple tools and an API 

 x86 only 

 PAPI (Performance API) 
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PAPI 

 Portable API: Uses the same routines to access counters across 

all supported architectures 

 Used by most performance analysis tools 

 

 High-level interface: 

 Predefined standard events, e.g. PAPI_FP_OPS 

 Availability and definition of events varies between platforms 

 List of available counters: papi_avail (-d) 

 Low-level interface: 

 Provides access to all machine specific counters 

 Not-portable 

 More flexible 

 List of available counters: papi_native_avail 
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HW Counter Measurements w/ Score-P 

 Score-P supports both PAPI preset and native counters 

 Available counters: papi_avail or papi_native_avail 

 

 

 

 

 Specify using “SCOREP_METRIC_PAPI” environment variable 

% module load UNITE papi/5.0.1 
% less $PAPI_ROOT/doc/papi-5.0.1-avail.txt 
% less $PAPI_ROOT/doc/papi-5.0.1-native_avail.txt 
% less $PAPI_ROOT/doc/papi-5.0.1-avail-detail.txt 

########################## 
##  In the job script:  ## 
########################## 
 
module load UNITE scalasca 
export SCOREP_METRIC_PAPI=“PAPI_FP_OPS,PAPI_TOT_CYC“ 
scalasca -analyze -f filter.txt \ 
runjob --ranks-per-node P --np n [...] --exe ./myprog 
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 Idea: Automatic search for patterns of inefficient behavior 

 Identification of wait states and their root causes 

 Classification of behavior & quantification of significance 

 Scalable identification of the critical execution path 

 

 

 

 

 

 Advantages 

 Guaranteed to cover the entire event trace 

 Quicker than manual/visual trace analysis 

 Helps to identify hot-spots for in-depth manual analysis 

Automatic Trace Analysis w/ Scalasca 

Call 

path 

P
ro

p
e
rt

y
 

Location 

Low-level 

event trace 

High-level 

result 
Analysis  
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Trace Generation & Analysis w/ Scalasca 

 Enable trace collection & analysis using “-t” option of 
“scalasca -analyze”: 

 

 

 

 

 

 

 

 ATTENTION: 

 Traces can quickly become extremely large! 

 Remember to use proper filtering, selective instrumentation, 
and Score-P memory specification 

 Before flooding the file system, ask us for assistance! 

########################## 
##  In the job script:  ## 
########################## 
 
module load UNITE scalasca 
export SCOREP_TOTAL_MEMORY=120MB   # Consult score report 
scalasca -analyze -f filter.txt -t \ 
    runjob --ranks-per-node P --np n [...] --exe ./myprog 
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Scalasca Trace Analysis Example 

Additional wait-state 

metrics from the trace 

analysis 

Delay / root-cause 

metrics 

Critical-path profile 
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Vampir Event Trace Visualizer 

 Offline trace visualization for Score-P’s 

OTF2 trace files 

 Visualization of MPI, OpenMP  

and application events: 

 All diagrams highly customizable (through context menus) 

 Large variety of displays for ANY part of the trace 

 http://www.vampir.eu 

 

 Advantage: 

 Detailed view of dynamic application behavior 

 Disadvantage: 

 Requires event traces (huge amount of data) 

 Completely manual analysis 
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Vampir Displays 
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Allinea Performance Reports 

 Single page report provides quick overview of performance 

issues 

 Works on unmodified, optimized executables 

 Shows CPU, memory, network and I/O utilization 

 

 Supports MPI, multi-threading and accelerators 

 Saves data in HTML, CVS or text form 

 

 http://www.allinea.com/products/allinea-performance-reports 

 Note: License limited to 512 processes (with unlimited number 

of threads) 
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Example Performance Reports 
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                                              (Rice University) 

 Multi-platform sampling-based call-path profiler 

 Works on unmodified, optimized executables 

 http://hpctoolkit.org 

 

 Advantages: 

 Overhead can be easily controlled via sampling interval 

 Advantageous for complex C++ codes with many small 

functions 

 Loop-level analysis (sometimes even individual source lines) 

 Supports POSIX threads 

 Disadvantages: 

 Statistical approach that might miss details 

 MPI/OpenMP time displayed as low-level system calls 
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HPCToolkit: Recipe 

1. Compile your code with “-g -qnoipa” 

 For MPI, also make sure your application calls 
MPI_Comm_rank first on MPI_COMM_WORLD 

2. Prefix your link command with “hpclink” 

 Ignore potential linker warnings ;-) 

3. Run your application as usual, specifying requested metrics 
with sampling intervals in environment variable 
 “HPCRUN_EVENT_LIST” 

4. Perform static binary analysis with 
 “hpcstruct --loop-fwd-subst=no <app>” 

5. Combine measurements with 
 “hpcprof –S <struct file> \ 
     -I “<path_to_src>/*” <measurement_dir>” 

6. View results with 
 “hpcviewer <hpct_database>” 
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HPCToolkit: Metric Specification 

 Specified via environment variable HPCRUN_EVENT_LIST 

 

 General format: 

 “name@interval [;name@interval ...]” 

 

 Possible sample sources: 

 WALLCLOCK 

 PAPI counters 

 IO   (use w/o interval spec) 

 MEMLEAK  (use w/o interval spec) 

 

 Interval: given in microseconds 

 E.g., 10000 → 100 samples per second 
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Example: hpcviewer 

Callpath to 

hotspot 

associated 

source code 
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TAU 

 Very portable tool set for 

instrumentation, measurement and analysis 

of parallel multi-threaded applications 

 http://tau.uoregon.edu/ 

 

 Supports 

 Various profiling modes and tracing 

 Various forms of code instrumentation 

 C, C++, Fortran, Java, Python 

 MPI, multi-threading (OpenMP, Pthreads, …) 

 Accelerators 
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TAU: Instrumentation 

 Flexible instrumentation mechanisms at multiple levels 

 Source code 

 manual 

 automatic 

 C, C++, F77/90/95 (Program Database Toolkit (PDT)) 

 OpenMP (directive rewriting with Opari) 

 Object code 

 pre-instrumented libraries (e.g., MPI using PMPI) 

 statically-linked and dynamically-loaded (e.g., Python) 

 Executable code 

 dynamic instrumentation (pre-execution) (DynInst) 

 virtual machine instrumentation (e.g., Java using JVMPI) 

 Support for performance mapping 

 Support for object-oriented and generic programming 
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TAU: Basic Profile View 
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TAU: Callgraph Profile View 

Box width and 

color indicate 

different metrics 
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TAU: 3D Profile View 
Height and color 

indicate different 

metrics 
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Tools not yet mentioned 

 Gprof 

 Callgrind 

 MAQAO 

 ompP 

 mpiP 

 Allinea MAP (commercial) 

 Intel VTune (commercial) 

 Open|SpeedShop 

 Extrae/Paraver 

 PerfSuite 

 Nvidia visual profiler 

 


