
M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Performance Analysis 1

January 2015 | Michael Knobloch

 M. Knobloch Performance Analysis I, January 2015 2

Outline

 This lecture:

 Basic concepts of performance analysis

 Sampling & Instrumentation

 Profiling & Tracing

 Performance analysis with Score-P

 Tool overview

 Next lecture (25.01.2016)

 Trace analysis in detail

 Automatic analysis with Scalasca

 Manual analysis with Vampir

 M. Knobloch Performance Analysis I, January 2015 3

Motivation

Make it work,

make it right,

make it fast.

 Kent Beck

Premature

optimization is the

root of all evil.

 Donald E. Knuth

If you optimize

everything, you will

always be unhappy.

 Donald E. Knuth

 M. Knobloch Performance Analysis I, January 2015 4

Today: the “free lunch” is over

■ Moore's law is still in charge, but

■ Clock rates no longer increase

■ Performance gains only through

increased parallelism

■ Optimizations of applications more

difficult

■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity

■ Hierarchical networks / memory

■ More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

 M. Knobloch Performance Analysis I, January 2015 5

Performance factors of parallel applications

■ “Sequential” factors

■ Computation

Choose right algorithm, use optimizing compiler

■ Vectorization

 Especially important on many-core architectures

■ Cache and memory

Tough! Only limited tool support, hope compiler gets it

right

■ Input / output

Often not given enough attention

 M. Knobloch Performance Analysis I, January 2015 6

Performance factors of parallel applications

■ “Parallel” factors

■ Partitioning / decomposition

 Load balancing

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking

 More or less understood, good tool support

 M. Knobloch Performance Analysis I, January 2015 7

Tuning basics

■ Successful engineering is a combination of

■ The right algorithms and libraries

■ Compiler flags and directives

Thinking !!!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

After each step!

 M. Knobloch Performance Analysis I, January 2015 8

Performance engineering workflow

■ Prepare application (with symbols),

insert extra code (probes/hooks)

■ Collection of data relevant to

execution performance analysis

■ Calculation of metrics, identification

of performance metrics

■ Presentation of results in an

intuitive/understandable form

■ Modifications intended to eliminate/reduce

performance problems

Preparation

Measurement

Analysis

Examination

Optimization

 M. Knobloch Performance Analysis I, January 2015 9

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of

the code

Know what matters!

■ Developers typically spend 20% of their effort to get

80% of the total speedup possible for the application

Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

 M. Knobloch Performance Analysis I, January 2015 10

Classification of measurement techniques

■ How are performance measurements triggered?

■ Sampling

■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?

■ Online

■ Post mortem

10

 M. Knobloch Performance Analysis I, January 2015 11

Sampling

■ Running program is periodically interrupted

to take measurement

■ Timer interrupt, OS signal, or HWC overflow

■ Service routine examines return-address stack

■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior

■ Not very detailed information on highly

volatile metrics

■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()

{

 int i;

 for (i=0; i < 3; i++)

 foo(i);

 return 0;

}

void foo(int i)

{

 if (i > 0)

 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

 M. Knobloch Performance Analysis I, January 2015 12

Instrumentation

Time

Measurement

■ Measurement code is inserted such that

every event of interest is captured directly

■ Can be done in various ways

■ Advantage:

■ Much more detailed information

■ Disadvantage:

■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()

{

 int i;

 for (i=0; i < 3; i++)

 foo(i);

 return 0;

}

void foo(int i)

{

 if (i > 0)

 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

 M. Knobloch Performance Analysis I, January 2015 13

Instrumentation techniques

■ Static instrumentation

■ Program is instrumented prior to execution

■ Dynamic instrumentation

■ Program is instrumented at runtime

■ Code is inserted

■ Manually

■ Automatically

■ By a preprocessor / source-to-source translation tool

■ By a compiler

■ By linking against a pre-instrumented library / runtime

system

■ By binary-rewrite / dynamic instrumentation tool

 M. Knobloch Performance Analysis I, January 2015 14

Critical issues

■ Accuracy

■ Intrusion overhead

■ Measurement itself needs time and thus lowers

performance

■ Perturbation

■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity

■ How many measurements?

■ How much information / processing during each

measurement?

Tradeoff: Accuracy vs. Expressiveness of data

 M. Knobloch Performance Analysis I, January 2015 15

Profiling / Runtime summarization

■ Recording of aggregated information

■ Total, maximum, minimum, …

■ For measurements

■ Time

■ Counts

■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities

■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

Profile = summarization of events over execution interval

 M. Knobloch Performance Analysis I, January 2015 16

Tracing

■ Recording information about significant points (events) during

execution of the program

■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record

■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of

 event records

 M. Knobloch Performance Analysis I, January 2015 17

Event tracing

void foo() {

 ...

 send(B, tag, buf);

 ...

}

Process A

void bar() {

 ...

 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

 trc_enter("bar");

 ...

 recv(A, tag, buf);

 trc_recv(A);

 ...

 trc_exit("bar");

}

void foo() {

 trc_enter("foo");

 ...

 trc_send(B);

 send(B, tag, buf);

 ...

 trc_exit("foo");

}

instrument

Global trace view

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

 M. Knobloch Performance Analysis I, January 2015 18

Tracing vs. Profiling

■ Tracing advantages

■ Event traces preserve the temporal and spatial

relationships among individual events (context)

■ Allows reconstruction of dynamic application behaviour on

any required level of abstraction

■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime causes perturbation

■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

 M. Knobloch Performance Analysis I, January 2015 19

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Inter-process analysis often involves application steering to

interrupt and re-configure the measurement

 M. Knobloch Performance Analysis I, January 2015 20

Post-mortem analysis

■ Performance data is stored (at end) of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

 M. Knobloch Performance Analysis I, January 2015 21

Typical Performance Analysis Procedure

■ Do I have a performance problem at all?

■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?

■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?

■ Call-path profiling, detailed basic block profiling

■ Why is it there?

■ Hardware counter analysis

■ Trace selected parts (to keep trace size manageable)

■ Does the code have scalability problems?

■ Load imbalance analysis, compare profiles at various

sizes function-by-function, performance modeling

 M. Knobloch Performance Analysis I, January 2015 22

Remark: No Single Solution is Sufficient!

A combination of different methods, tools and techniques

is typically needed!

■ Analysis

■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement

■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation

■ Source code / binary, manual / automatic, ...

 M. Knobloch Performance Analysis I, January 2015 24

Score-P

 Community instrumentation and measurement

infrastructure

 Developed by a consortium of performance

tool groups

 Next generation measurement system of

 Scalasca 2.x

 Vampir

 TAU

 Periscope

 Common data formats improve tool interoperability

 http://www.score-p.org

 M. Knobloch Performance Analysis I, January 2015 25

Score-P Overview

 M. Knobloch Performance Analysis I, January 2015 26

 Collection of trace-based performance analysis tools

 Specifically designed for large-scale systems

 Unique features:

 Scalable, automated search for event patterns

representing inefficient behavior

 Scalable identification of the critical execution path

 Delay / root-cause analysis

 Based on Score-P for instrumentation and measurement

 Includes convenience / post-processing commands

providing added value

 http://www.scalasca.org

 M. Knobloch Performance Analysis I, January 2015 27

What is the Key Bottleneck?

 Generate flat MPI profile using Score-P/Scalasca (or mpiP)

 Only requires re-linking

 Low runtime overhead

 Provides detailed information on MPI usage

 How much time is spent in which operation?

 How often is each operation called?

 How much data was transferred?

 Limitations:

 Computation on non-master threads and outside

of MPI_Init/MPI_Finalize scope ignored

 M. Knobloch Performance Analysis I, January 2015 28

Flat MPI Profile: Recipe

1. Prefix your link command with

 “scorep --nocompiler”

2. Prefix your MPI launch command with

 “scalasca -analyze”

3. After execution, examine analysis results using

 “scalasca -examine scorep_<title>”

 M. Knobloch Performance Analysis I, January 2015 29

Flat MPI Profile: Example

% module load UNITE scorep scalasca
% mpixlf90 -O3 -qsmp=omp -c foo.f90
% mpixlf90 -O3 -qsmp=omp -c bar.f90
% scorep --nocompiler \
 mpixlf90 -O3 –qsmp=omp -o myprog foo.o bar.o

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze \
 runjob --ranks-per-node P --np n [...] --exe ./myprog

##########################
After job finished: ##
##########################

% scalasca -examine scorep_myprog_Ppnxt_sum

 M. Knobloch Performance Analysis I, January 2015 30

Flat MPI Profile: Example (cont.)

Aggregate

execution time on

master threads

Time spent in a

particular MPI

call

Time spent in

selected call as

percentage of

total time

 M. Knobloch Performance Analysis I, January 2015 31

Where is the Key Bottleneck?

 Generate call-path profile using Score-P/Scalasca

 Requires re-compilation

 Runtime overhead depends on application characteristics

 Typically needs some care setting up a good measurement

configuration

 Filtering

 Selective instrumentation

 Option 1 (recommended):

Automatic compiler-based instrumentation

 Option 2:

Manual instrumentation of interesting phases, routines, loops

 M. Knobloch Performance Analysis I, January 2015 32

Call-path Profile: Recipe

1. Prefix your compile & link commands with

 “scorep”

2. Prefix your MPI launch command with

 “scalasca -analyze”

3. After execution, compare overall runtime with uninstrumented

run to determine overhead

4. If overhead is too high

1. Score measurement using

“scalasca -examine -s scorep_<title>”

2. Prepare filter file

3. Re-run measurement with filter applied using prefix

“scalasca –analyze –f <filter_file>”

5. After execution, examine analysis results using

 “scalasca -examine scorep_<title>”

 M. Knobloch Performance Analysis I, January 2015 33

Call-path Profile: Example

% module load UNITE scorep scalasca
% scorep mpixlf90 -O3 -qsmp=omp -c foo.f90
% scorep mpixlf90 -O3 -qsmp=omp -c bar.f90
% scorep \
 mpixlf90 -O3 –qsmp=omp -o myprog foo.o bar.o

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze \
 runjob --ranks-per-node P --np n [...] --exe ./myprog

 M. Knobloch Performance Analysis I, January 2015 34

Call-path Profile: Example (cont.)

 Estimates trace buffer requirements

 Allows to identify canditate functions for filtering

Computational routines with high visit count

and low time-per-visit ratio

 Region/call-path classification

 MPI (pure MPI library functions)

 OMP (pure OpenMP functions/regions)

 USR (user-level source local computation

 COM (“combined” USR + OpeMP/MPI)

 ANY/ALL (aggregate of all region types)

% scalasca -examine -s epik_myprog_Ppnxt_sum
scorep-score -r ./epik_myprog_Ppnxt_sum/profile.cubex
INFO: Score report written to ./scorep_myprog_Ppnxt_sum/scorep.score

USR

USR

COM

COM USR

USR MPI OMP

 M. Knobloch Performance Analysis I, January 2015 35

Call-path Profile: Example (cont.)

% less scorep_myprog_Ppnxt_sum/scorep.score
Estimated aggregate size of event trace: 162GB
Estimated requirements for largest trace buffer (max_buf): 2758MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 2822MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=2822MB to avoid
 intermediate flushes or reduce requirements using USR regions
 filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
 visit[us]
 ALL 2,891,417,902 6,662,521,083 36581.51 100.0 5.49 ALL
 USR 2,858,189,854 6,574,882,113 13618.14 37.2 2.07 USR
 OMP 54,327,600 86,353,920 22719.78 62.1 263.10 OMP
 MPI 676,342 550,010 208.98 0.6 379.96 MPI
 COM 371,930 735,040 34.61 0.1 47.09 COM

 USR 921,918,660 2,110,313,472 3290.11 9.0 1.56 matmul_sub
 USR 921,918,660 2,110,313,472 5914.98 16.2 2.80 binvcrhs
 USR 921,918,660 2,110,313,472 3822.64 10.4 1.81 matvec_sub
 USR 41,071,134 87,475,200 358.56 1.0 4.10 lhsinit
 USR 41,071,134 87,475,200 145.42 0.4 1.66 binvrhs
 USR 29,194,256 68,892,672 86.15 0.2 1.25 exact_solution
 OMP 3,280,320 3,293,184 15.81 0.0 4.80 !$omp parallel
 [...]

 M. Knobloch Performance Analysis I, January 2015 36

Call-path Profile: Filtering

 In this example, the 6 most fequently called routines are

of type USR

 These routines contribute around 35% of total time

 However, much of that is most likely measurement overhead

 Frequently executed

 Time-per-visit ratio in the order of a few microseconds

 Avoid measurements to reduce the overhead

 List routines to be filtered in simple text file

 M. Knobloch Performance Analysis I, January 2015 37

Filtering: Example

 Score-P filtering files support

 Wildcards (shell globs)

 Blacklisting

 Whitelisting

 Filtering based on filenames

% cat filter.txt
SCOREP_REGION_NAMES_BEGIN
 EXCLUDE
 binvcrhs
 matmul_sub
 matvec_sub
 binvrhs
 lhsinit
 exact_solution
SCOREP_REGION_NAMES_END

 M. Knobloch Performance Analysis I, January 2015 38

Call-path Profile: Example (cont.)

To verify effect of filter:

% scalasca -examine -s -f filter.txt \
 scorep_myprog_Ppnxt_sum

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze -f filter.txt \
 runjob --ranks-per-node P --np n [...] --exe ./myprog

##########################
After job finished: ##
##########################

% scalasca -examine scorep_myprog_Ppnxt_sum

 M. Knobloch Performance Analysis I, January 2015 39

Call-path Profile: Example (cont.)

 M. Knobloch Performance Analysis I, January 2015 40

Call-path Profile: Example (cont.)

Distribution of

selected metric

across call tree

When expanding,

value changes

from inclusive to

exclusive Selection updates

columns to the

right

Box plot view shows

distribution across

processes/threads

 M. Knobloch Performance Analysis I, January 2015 41

Call-path Profile: Example (cont.)

Split base

metrics into more

specific metrics

 M. Knobloch Performance Analysis I, January 2015 42

Score-P: Advanced Features

 Measurement can be extensively configured via

environment variables

 Check output of “scorep-info config-vars”

for details

 Allows for targeted measurements:

 Selective recording

 Phase profiling

 Parameter-based profiling

 …

 Please ask us or see the user manual for details

 M. Knobloch Performance Analysis I, January 2015 43

Why is the Bottleneck There?

 This is highly application dependent!

 Might require additional measurements

 Hardware-counter analysis

 CPU utilization

 Cache behavior

 Selective instrumentation

 Manual/automatic event trace analysis

 M. Knobloch Performance Analysis I, January 2015 44

Hardware Counters

 Counters: set of registers that count processor events, e.g.

floating point operations or cycles

 Number of registers, counters and simultaneously measurable

events vary between platforms

 Can be measured by:

 perf:

 Integrated in Linux since Kernel 2.6.31

 Library and CLI

 LIKWID:

 Direct access to MSRs (requires Kernel module)

 Consists of multiple tools and an API

 x86 only

 PAPI (Performance API)

 M. Knobloch Performance Analysis I, January 2015 45

PAPI

 Portable API: Uses the same routines to access counters across

all supported architectures

 Used by most performance analysis tools

 High-level interface:

 Predefined standard events, e.g. PAPI_FP_OPS

 Availability and definition of events varies between platforms

 List of available counters: papi_avail (-d)

 Low-level interface:

 Provides access to all machine specific counters

 Not-portable

 More flexible

 List of available counters: papi_native_avail

 M. Knobloch Performance Analysis I, January 2015 46

HW Counter Measurements w/ Score-P

 Score-P supports both PAPI preset and native counters

 Available counters: papi_avail or papi_native_avail

 Specify using “SCOREP_METRIC_PAPI” environment variable

% module load UNITE papi/5.0.1
% less $PAPI_ROOT/doc/papi-5.0.1-avail.txt
% less $PAPI_ROOT/doc/papi-5.0.1-native_avail.txt
% less $PAPI_ROOT/doc/papi-5.0.1-avail-detail.txt

##########################
In the job script: ##
##########################

module load UNITE scalasca
export SCOREP_METRIC_PAPI=“PAPI_FP_OPS,PAPI_TOT_CYC“
scalasca -analyze -f filter.txt \
runjob --ranks-per-node P --np n [...] --exe ./myprog

 M. Knobloch Performance Analysis I, January 2015 47

 Idea: Automatic search for patterns of inefficient behavior

 Identification of wait states and their root causes

 Classification of behavior & quantification of significance

 Scalable identification of the critical execution path

 Advantages

 Guaranteed to cover the entire event trace

 Quicker than manual/visual trace analysis

 Helps to identify hot-spots for in-depth manual analysis

Automatic Trace Analysis w/ Scalasca

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

 M. Knobloch Performance Analysis I, January 2015 48

Trace Generation & Analysis w/ Scalasca

 Enable trace collection & analysis using “-t” option of
“scalasca -analyze”:

 ATTENTION:

 Traces can quickly become extremely large!

 Remember to use proper filtering, selective instrumentation,
and Score-P memory specification

 Before flooding the file system, ask us for assistance!

##########################
In the job script: ##
##########################

module load UNITE scalasca
export SCOREP_TOTAL_MEMORY=120MB # Consult score report
scalasca -analyze -f filter.txt -t \
 runjob --ranks-per-node P --np n [...] --exe ./myprog

 M. Knobloch Performance Analysis I, January 2015 49

Scalasca Trace Analysis Example

Additional wait-state

metrics from the trace

analysis

Delay / root-cause

metrics

Critical-path profile

 M. Knobloch Performance Analysis I, January 2015 50

Vampir Event Trace Visualizer

 Offline trace visualization for Score-P’s

OTF2 trace files

 Visualization of MPI, OpenMP

and application events:

 All diagrams highly customizable (through context menus)

 Large variety of displays for ANY part of the trace

 http://www.vampir.eu

 Advantage:

 Detailed view of dynamic application behavior

 Disadvantage:

 Requires event traces (huge amount of data)

 Completely manual analysis

 M. Knobloch Performance Analysis I, January 2015 51

Vampir Displays

 M. Knobloch Performance Analysis I, January 2015 52

Allinea Performance Reports

 Single page report provides quick overview of performance

issues

 Works on unmodified, optimized executables

 Shows CPU, memory, network and I/O utilization

 Supports MPI, multi-threading and accelerators

 Saves data in HTML, CVS or text form

 http://www.allinea.com/products/allinea-performance-reports

 Note: License limited to 512 processes (with unlimited number

of threads)

 M. Knobloch Performance Analysis I, January 2015 53

Example Performance Reports

 M. Knobloch Performance Analysis I, January 2015 54

 (Rice University)

 Multi-platform sampling-based call-path profiler

 Works on unmodified, optimized executables

 http://hpctoolkit.org

 Advantages:

 Overhead can be easily controlled via sampling interval

 Advantageous for complex C++ codes with many small

functions

 Loop-level analysis (sometimes even individual source lines)

 Supports POSIX threads

 Disadvantages:

 Statistical approach that might miss details

 MPI/OpenMP time displayed as low-level system calls

 M. Knobloch Performance Analysis I, January 2015 55

HPCToolkit: Recipe

1. Compile your code with “-g -qnoipa”

 For MPI, also make sure your application calls
MPI_Comm_rank first on MPI_COMM_WORLD

2. Prefix your link command with “hpclink”

 Ignore potential linker warnings ;-)

3. Run your application as usual, specifying requested metrics
with sampling intervals in environment variable
 “HPCRUN_EVENT_LIST”

4. Perform static binary analysis with
 “hpcstruct --loop-fwd-subst=no <app>”

5. Combine measurements with
 “hpcprof –S <struct file> \
 -I “<path_to_src>/*” <measurement_dir>”

6. View results with
 “hpcviewer <hpct_database>”

 M. Knobloch Performance Analysis I, January 2015 56

HPCToolkit: Metric Specification

 Specified via environment variable HPCRUN_EVENT_LIST

 General format:

 “name@interval [;name@interval ...]”

 Possible sample sources:

 WALLCLOCK

 PAPI counters

 IO (use w/o interval spec)

 MEMLEAK (use w/o interval spec)

 Interval: given in microseconds

 E.g., 10000 → 100 samples per second

 M. Knobloch Performance Analysis I, January 2015 57

Example: hpcviewer

Callpath to

hotspot

associated

source code

 M. Knobloch Performance Analysis I, January 2015 58

TAU

 Very portable tool set for

instrumentation, measurement and analysis

of parallel multi-threaded applications

 http://tau.uoregon.edu/

 Supports

 Various profiling modes and tracing

 Various forms of code instrumentation

 C, C++, Fortran, Java, Python

 MPI, multi-threading (OpenMP, Pthreads, …)

 Accelerators

 M. Knobloch Performance Analysis I, January 2015 59

TAU: Instrumentation

 Flexible instrumentation mechanisms at multiple levels

 Source code

 manual

 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))

 OpenMP (directive rewriting with Opari)

 Object code

 pre-instrumented libraries (e.g., MPI using PMPI)

 statically-linked and dynamically-loaded (e.g., Python)

 Executable code

 dynamic instrumentation (pre-execution) (DynInst)

 virtual machine instrumentation (e.g., Java using JVMPI)

 Support for performance mapping

 Support for object-oriented and generic programming

 M. Knobloch Performance Analysis I, January 2015 60

TAU: Basic Profile View

 M. Knobloch Performance Analysis I, January 2015 61

TAU: Callgraph Profile View

Box width and

color indicate

different metrics

 M. Knobloch Performance Analysis I, January 2015 62

TAU: 3D Profile View
Height and color

indicate different

metrics

 M. Knobloch Performance Analysis I, January 2015 63

Tools not yet mentioned

 Gprof

 Callgrind

 MAQAO

 ompP

 mpiP

 Allinea MAP (commercial)

 Intel VTune (commercial)

 Open|SpeedShop

 Extrae/Paraver

 PerfSuite

 Nvidia visual profiler

