
PERFORMANCE ANALYSIS IN A NUTSHELL

OCTOBER 13, 2022 I MICHAEL KNOBLOCH

HANDS ON WITH SCORE-P, SCALASCA, AND VAMPIR

TUTORIAL EXERCISE OBJECTIVES

• Familiarise with usage of VI-HPS tools

• complementary tools’ capabilities & interoperability

• Prepare to apply tools productively to your applications(s)

• Exercise is based on a small portable benchmark code

• unlikely to have significant optimisation opportunities

• Optional (recommended) exercise extensions

• analyse performance of alternative configurations

• investigate effectiveness of system-specific compiler/MPI optimisations

and/or placement/binding/affinity capabilities

• investigate scalability and analyse scalability limiters

• compare performance on different HPC platforms

• …

BT-MZ @ LEVANTE

REFERENCE RUN

PERFORMANCE ANALYSIS STEPS

• 0.0 Reference preparation for validation

• 1.0 Program instrumentation

• 1.1 Summary measurement collection

• 1.2 Summary analysis report examination

• 2.0 Summary experiment scoring

• 2.1 Summary measurement collection with filtering

• 2.2 Filtered summary analysis report examination

• 3.0 Event trace collection

• 3.1 Event trace examination & analysis

COMPILER AND MPI MODULES (LEVANTE)

• Select modules for the Intel + OpenMPI tool chain

• Copy tutorial sources to your HOME directory

% module load intel-oneapi-compilers/2022.0.1-gcc-11.2.0

% module load openmpi/4.1.2-intel-2021.5.0

% cd $HOME

% tar zxvf /home/k/k203166/NPB3.3-MZ-MPI.tar.gz

% cd NPB3.3-MZ-MPI

Should already been done on login

NPB-MZ-MPI SUITE

• The NAS Parallel Benchmark suite (MPI+OpenMP version)

• Available from:

http://www.nas.nasa.gov/Software/NPB

• 3 benchmarks in Fortran77

• Configurable for various sizes & classes

• Move into the NPB3.3-MZ-MPI root directory

• Subdirectories contain source code for each benchmark

• plus additional configuration and common code

• The provided distribution has already been configured for the tutorial, such that it is ready to “make” one or

more of the benchmarks

• but config/make.def may first need to be adjusted to specify appropriate compiler flags

% ls

bin/ common/ jobscript/ Makefile README.install SP-MZ/

BT-MZ/ config/ LU-MZ/ README README.tutorial sys/

NPB-MZ-MPI / BT: CONFIG/MAKE.DEF

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS.

#---

#---
Configured for generic MPI with GCC compiler
#---
#OPENMP = -fopenmp # GCC compiler
OPENMP = -fopenmp # Intel compiler

...
#---
The Fortran compiler used for MPI programs
#---
MPIF77 = mpiifort

Alternative variants to perform instrumentation
...

#MPIF77 = scorep --user mpiifort
...

Hint: uncomment a compiler

wrapper to do instrumentation

Uncomment COMPILER flags

according to current environment

BUILDING AN NPB-MZ-MPI BENCHMARK

• Type “make”

for instructions

% make

 ===

 = NAS PARALLEL BENCHMARKS 3.3 =

 = MPI+OpenMP Multi-Zone Versions =

 = F77 =

 ===

 To make a NAS multi-zone benchmark type

 make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

 where <benchmark-name> is “bt-mz”, “lu-mz”, or “sp-mz”

 <class> is “S”, “W”, “A” through “F”

 <nprocs> is number of processes

 [...]

 * Custom build configuration is specified in config/make.def *

 * Suggested tutorial exercise configuration for Levante: *

 * make bt-mz CLASS=C NPROCS=28 *

% make bt-mz CLASS=C NPROCS=28

make[1]: Entering directory `BT-MZ'

make[2]: Entering directory `sys'

cc -o setparams setparams.c -lm

make[2]: Leaving directory `sys'

../sys/setparams bt-mz 28 C

make[2]: Entering directory `../BT-MZ'

mpif77 -g -c -O3 -fopenmp bt.f

[…]

mpif77 -g -c -O3 –fopenmp mpi_setup.f

cd ../common; mpif77 -g -c -O3 -fopenmp print_results.f

cd ../common; mpif77 -g -c -O3 -fopenmp timers.f

mpif77 -g -O3 -fopenmp -o ../bin/bt-mz_B.8 bt.o

 initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o

 rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o solve_subs.o

 z_solve.o add.o error.o verify.o mpi_setup.o ../common/print_results.o

 ../common/timers.o

make[2]: Leaving directory `BT-MZ'

Built executable ../bin/bt-mz_C.28

make[1]: Leaving directory `BT-MZ'

BUILDING AN NPB-MZ-MPI BENCHMARK

• Specify the benchmark

configuration

• benchmark name:

bt-mz, lu-mz, sp-mz

• the benchmark class

(S, W, A, B, C, D, E):

CLASS=C

• the number of MPI

processes:

NPROCS=28

Shortcut: % make suite

NPB-MZ-MPI / BT (BLOCK TRIDIAGONAL SOLVER)

• What does it do?

• Solves a discretized version of the unsteady, compressible Navier-Stokes equations in

three spatial dimensions

• Performs 200 time-steps on a regular 3-dimensional grid

• Implemented in 20 or so Fortran77 source modules

• Uses MPI & OpenMP in combination

• 28 processes each with 4 threads should be reasonable for 2 compute nodes of Levante

• bt-mz_C.28 should run in about 10 seconds with the Intel toolchain

NPB-MZ-MPI / BT REFERENCE EXECUTION

• Copy jobscript and

launch as a hybrid

MPI+OpenMP

application

% cd bin

% cp ../jobscript/levante/reference.sbatch .

% less reference.sbatch

% sbatch --account=kg0166 reference.sbatch

% cat bt-mz.<job_id>.out

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8

 Iterations: 200 dt: 0.000300

 Number of active processes: 28

 Use the default load factors with threads

 Total number of threads: 112 (4.0 threads/process)

 Time step 1

 Time step 20

 [...]

 Time step 180

 Time step 200

 Verification Successful

 BT-MZ Benchmark Completed.

 Time in seconds = 17.33

Hint: save the benchmark output

(or note the run time) to be able to

refer to it later

BT-MZ @ LEVANTE

INITIAL SCORE-P MEASUREMENT

 12

PERFORMANCE ANALYSIS STEPS

• 0.0 Reference preparation for validation

• 1.0 Program instrumentation

• 1.1 Summary measurement collection

• 1.2 Summary analysis report examination

• 2.0 Summary experiment scoring

• 2.1 Summary measurement collection with filtering

• 2.2 Filtered summary analysis report examination

• 3.0 Event trace collection

• 3.1 Event trace examination & analysis

LOCAL INSTALLATION (LEVANTE)

• Latest/recent versions of Score-P and tools available via modules

• Score-P installation is toolchain specific

• Check module avail scorep for alternate Score-P modules available

• Copy tutorial sources to your $HOME directory (should be done already)

% ml intel-oneapi-compilers/2022.0.1-gcc-11.2.0 openmpi/4.1.2-intel-2021.5.0

% ml scorep/7.0-intel-2021.5.0 cube/4.6-gcc-11.2.0 scalasca/2.6-gcc-11.2.0

% spack load vampir@10.0.2

% source /home/k/k203166/scorep.env

% cd $HOME

% tar zxvf /home/k/k203166/NPB3.3-MZ-MPI.tar.gz

% cd NPB3.3-MZ-MPI

NPB-MZ-MPI / BT INSTRUMENTATION

• Edit config/make.def to

adjust build configuration

• Modify specification of

compiler/linker: MPIF77

#---

The Fortran compiler used for MPI programs

#---

#MPIF77 = mpif77

Alternative variants to perform instrumentation

...

MPIF77 = scorep --user mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...

Uncomment the Score-P

compiler wrapper

specification

NPB-MZ-MPI / BT INSTRUMENTED BUILD

• Return to root directory

and clean-up

• Re-build executable using

Score-P compiler wrapper

% make clean

% make bt-mz CLASS=C NPROCS=28

cd BT-MZ; make CLASS=B NPROCS=28 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c -lm

../sys/setparams bt-mz 28 C

scorep --user mpif77 -g -c -O3 -qopenmp bt.f

 [...]

cd ../common; scorep --user mpif77 -g -c -O3 -qopenmp timers.f

 [...]

scorep --user mpif77 -g –O3 -qopenmp -o ../bin.scorep/bt-mz_B.28 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_C.28

make: Leaving directory 'BT-MZ‘

MEASUREMENT CONFIGURATION: SCOREP-INFO

• Score-P measurements

are configured via

environmental variables

% scorep-info config-vars --full

SCOREP_ENABLE_PROFILING

 Description: Enable profiling

 [...]

SCOREP_ENABLE_TRACING

 Description: Enable tracing

 [...]

SCOREP_TOTAL_MEMORY

 Description: Total memory in bytes for the measurement system

 [...]

SCOREP_EXPERIMENT_DIRECTORY

 Description: Name of the experiment directory

 [...]

SCOREP_FILTERING_FILE

 Description: A file name which contain the filter rules

 [...]

SCOREP_METRIC_PAPI

 Description: PAPI metric names to measure

 [...]

SCOREP_METRIC_RUSAGE

 Description: Resource usage metric names to measure

 [... More configuration variables ...]

SUMMARY MEASUREMENT COLLECTION

• Change to the directory

containing the new

executable before running

it with the desired

configuration

• Check settings

• Submit job

% cd bin.scorep

% cp ../jobscript/levante/scorep.sbatch .

% cat scorep.sbatch

...

Score-P measurement configuration

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum

#export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC,…

#export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L2_TCM

#export SCOREP_METRIC_RUSAGE=ru_stime

#export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss

#export SCOREP_TIMER=gettimeofday

Run the application

mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

% sbatch –account=kg0166 scorep.sbatch

Leave these lines

commented out

for the moment

SUMMARY MEASUREMENT COLLECTION

• Check the output of the

application run

% less npb_btmz.o<job_id>

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP \

>Benchmark

 Number of zones: 8 x 8

 Iterations: 200 dt: 0.000300

 Number of active processes: 28

 Use the default load factors with threads

 Total number of threads: 112 (4.0 threads/process)

 Calculated speedup = 71.69

 Time step 1

 [... More application output ...]

BT-MZ SUMMARY ANALYSIS REPORT EXAMINATION

• Creates experiment directory

including

• A brief content overview

(MANIFEST.md)

• A record of the measurement

configuration (scorep.cfg)

• The analysis report that was

collated after measurement

(profile.cubex)

• Interactive exploration with Cube

% ls

bt-mz_C.28 bt-mz.<job_id>.out scorep_bt-mz_sum/

% ls scorep_bt-mz_sum

MANIFEST.md profile.cubex scorep.cfg

% cube scorep_bt-mz_sum/profile.cubex

 [CUBE GUI showing summary analysis report]

Hint:

Copy ‘profile.cubex’ to local system (laptop)

using ‘scp’ to improve responsiveness of GUI

Reference results available:
/home/k/k203166/reference_results

CUBE

• Parallel program analysis report exploration tools

• Libraries for XML+binary report reading & writing

• Algebra utilities for report processing

• GUI for interactive analysis exploration

• Requires Qt4 ≥4.6 or Qt 5

• Originally developed as part of the Scalasca toolset

• Now available as a separate component

• Can be installed independently of Score-P,

e.g., on laptop or desktop

• Latest release: Cube v4.6 (April 2021)

Note:

Binary packages provided for Windows & MacOS,

 from www.scalasca.org website in software/Cube-4x

CUBE GUI (LEVANTE)

• Run remote (often convenient)

• start X server (e.g., Xming) locally

• connect to Levante with X forwarding

enabled

• -Y may be faster but is insecure!

• load cube module and start cube remotely

 Install & run local (recommended)

 install Cube GUI locally on desktop
 binary packages available for MacOS & Windows and

externally provided by OpenHPC and various Linux

distributions

 source package available for Linux, requires Qt

 configure/build/install manually or use your favourite

framework (e.g. Spack or EasyBuild)

 copy .cubex file (or entire scorep directory) to

desktop from remote system

OR locally mount remote filesystem

 start cube locally

desk$ ssh –X levante

Welcome to levante…

Levante$ cd $PATH_TO_BT

levante$ module load cube

levante$ cube ./scorep_sum/profile.cubex

desk$ mkdir $HOME/mnt

desk$ sshfs [user@]remote.sys:[dir] $HOME/mnt

desk$ cd $HOME/mnt

desk$ cube ./scorep_sum/profile.cubex

https://www.scalasca.org/scalasca/software/cube-4.x/download.html

mailto: scalasca@fz-juelich.de

Call

path

P
ro

p
e
rt

y

Location

ANALYSIS PRESENTATION AND EXPLORATION

• Representation of values (severity matrix)

on three hierarchical axes

• Performance property (metric)

• Call path (program location)

• System location (process/thread)

• Three coupled tree browsers

• Cube displays severities

• As value: for precise comparison

• As colour: for easy identification of hotspots

• Inclusive value when closed & exclusive value when expanded

• Customizable via display modes

How is it

distributed across

the processes/threads?

What kind of

performance

metric?

Where is it in the

source code?

In what context?

ANALYSIS PRESENTATION

Inclusive Exclusive

int foo()

{

 int a;

 a = 1 + 1;

 bar();

 a = a + 1;

 return a;

}

INCLUSIVE VS. EXCLUSIVE VALUES

• Inclusive

• Information of all sub-elements aggregated into single value

• Exclusive

• Information cannot be subdivided further

SCORE-P ANALYSIS REPORT EXPLORATION (OPENING

VIEW)

METRIC SELECTION

Selecting the “Time” metric

shows total execution time

Distribution

of selected metric

for call path

by process/thread

EXPANDING THE SYSTEM TREE

Distribution of selected

metric across the call tree

Collapsed: inclusive value

Expanded: exclusive value

EXPANDING THE CALL TREE

Selection updates

metric values shown

in columns to the right

SELECTING A CALL PATH

Right-click opens

context menu

SOURCE-CODE VIEW VIA CONTEXT MENU

SOURCE-CODE VIEW

Note:

This feature depends on file and line

number information provided by the

instrumentation, i.e., it may not always

be available

Select flat view tab,

expand all nodes,

and sort by exclusive value

FLAT PROFILE VIEW

Box plot shows distribution

across the system; with

min/max/avg/median/quartiles

BOX PLOT VIEW

Data can be shown in

various percentage

modes

ALTERNATIVE DISPLAY MODES

IMPORTANT DISPLAY MODES

• Absolute

• Absolute value shown in seconds/bytes/counts

• Selection percent

• Value shown as percentage w.r.t. the selected node

“on the left” (metric/call path)

• Peer percent (system tree only)

• Value shown as percentage relative to the maximum peer value

Select multiple nodes

with Ctrl-click

MULTIPLE SELECTION

Context-sensitive help

available for all GUI items

CONTEXT-SENSITIVE HELP

DERIVED METRICS

• Derived metrics are defined using CubePL expressions, e.g.:

metric::time(i)/metric::visits(e)

• Values of derived metrics are not stored, but calculated on-the-fly

• Types of derived metrics:

• Prederived: evaluation of the CubePL expression is performed before aggregation

• Postderived: evaluation of the CubePL expression is performed after aggregation

• Examples:

• “Average execution time”: Postderived metric with expression

metric::time(i)/metric::visits(e)

• “Number of FLOP per second”: Postderived metric with expression

metric::FLOP()/metric::time()

Parameters of the

derived metric

CubePL expression

Collection of derived

metrics

DERIVED METRICS IN CUBE GUI

EXAMPLE: FLOPS BASED ON PAPI_FP_OPS AND TIME

ITERATION PROFILING

• Show time dependent behavior by “unrolling” iterations

• Preparations:

• Mark loop body by using Score-P instrumentation API in your source code

• Result in the Cube profile:

• Iterations shown as separate call trees

 Useful for checking results for specific iterations

or

• Select your user-instrumented region and mark it as loop

• Choose “Hide iterations”

 View the Barplot statistics or the (thread x iterations) Heatmap

SCOREP_USER_REGION_DEFINE(scorep_bt_loop)

SCOREP_USER_REGION_BEGIN(scorep_bt_loop, "<<bt_iter>>", SCOREP_USER_REGION_TYPE_DYNAMIC)

SCOREP_USER_REGION_END(scorep_bt_loop)

ITERATION PROFILING: BARPLOT

Aggregation

selection

Iterations

ITERATION PROFILING: HEATMAP

Iterations

Threads

• Extracting solver sub-tree from analysis report

• Calculating difference of two reports

• Additional utilities for merging, calculating mean, etc.

• Default output of cube_utility is a new report utility.cubex

• Further utilities for report scoring & statistics

• Run utility with `-h’ (or no arguments) for brief usage info

% cube_cut -r '<<ITERATION>>' scorep_bt-mz_C_16x8_sum/profile.cubex

Writing cut.cubex... done.

% cube_diff scorep_bt-mz_C_16x8_sum/profile.cubex cut.cubex

Writing diff.cubex... done.

CUBE ALGEBRA UTILITIES

SQUARE SNEAK PREVIEW

• Scalasca provides square to facilitate analysis report exploration

• square = scalasca –examine [OPTIONS] (./scorep_expt_sum | ./profile.cubex)

• Processes intermediate .cubex files produced by Score-P and Scout

• profile.cubex -> summary.cubex

• scout.cubex -> trace.cubex

• and (optionally) starts CUBE GUI with the post-processed file

• containing additional derived metrics and metric hierarchies

BT-MZ @ LEVANTE

SCORING & FILTERING

 47

PERFORMANCE ANALYSIS STEPS

• 0.0 Reference preparation for validation

• 1.0 Program instrumentation

• 1.1 Summary measurement collection

• 1.2 Summary analysis report examination

• 2.0 Summary experiment scoring

• 2.1 Summary measurement collection with filtering

• 2.2 Filtered summary analysis report examination

• 3.0 Event trace collection

• 3.1 Event trace examination & analysis

BT-MZ SUMMARY ANALYSIS RESULT SCORING

• Report scoring as textual

output

• Region/callpath classification

• MPI pure MPI functions

• OMP pure OpenMP regions

• USR user-level computation

• COM “combined” USR+OpenMP/MPI

• ALL aggregate of all region types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160GB

Estimated requirements for largest trace buffer (max_buf): 11GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 11GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 10,791,335,059 6,589,342,123 2360.04 100.0 0.36 ALL

 USR 10,754,591,276 6,574,805,745 926.34 39.3 0.14 USR

 OMP 34,990,128 13,667,328 1241.50 52.6 90.84 OMP

 COM 1,178,450 725,200 1.97 0.1 2.71 COM

 MPI 616,168 143,834 190.23 8.1 1322.55 MPI

 SCOREP 41 16 0.01 0.0 372.15 SCOREP

160 GB total memory

11 GB per rank!

USR

USR

COM

COM USR

OMP MPI

BT-MZ SUMMARY ANALYSIS REPORT BREAKDOWN

• Score report breakdown by region

% scorep-score -r scorep_bt-mz_sum/profile.cubex

 [...]

 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 10,791,335,059 6,589,342,123 2360.04 100.0 0.36 ALL

 USR 10,754,591,276 6,574,805,745 926.34 39.3 0.14 USR

 OMP 34,990,128 13,667,328 1241.50 52.6 90.84 OMP

 COM 1,178,450 725,200 1.97 0.1 2.71 COM

 MPI 616,168 143,834 190.23 8.1 1322.55 MPI

 SCOREP 41 16 0.01 0.0 372.15 SCOREP

 USR 3,454,903,374 2,110,313,472 373.15 15.8 0.18 binvcrhs_

 USR 3,454,903,374 2,110,313,472 218.75 9.3 0.10 matvec_sub_

 USR 3,454,903,374 2,110,313,472 303.12 12.8 0.14 matmul_sub_

 USR 149,170,944 87,475,200 14.95 0.6 0.17 lhsinit_

 USR 149,170,944 87,475,200 9.69 0.4 0.11 binvrhs_

 USR 112,148,088 68,892,672 6.69 0.3 0.10 exact_solution

USR

USR

COM

COM USR

OMP MPI

More than

10 GB just for these

6 regions

BT-MZ SUMMARY ANALYSIS SCORE

• Summary measurement analysis score reveals

• Total size of event trace would be ~160 GB

• Maximum trace buffer size would be ~11 GB per rank

• smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

• 99.5% of the trace requirements are for USR regions

• purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

• These USR regions contribute around 39% of total time

• however, much of that is very likely to be measurement overhead for frequently-executed small routines

• Advisable to tune measurement configuration

• Specify an adequate trace buffer size

• Specify a filter file listing (USR) regions not to be measured

BT-MZ SUMMARY ANALYSIS REPORT FILTERING

• Report scoring with

prospective filter listing

7 USR regions

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% scorep-score -f ../config/scorep.filt -c 2 \

 scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 1381MB

Estimated requirements for largest trace buffer (max_buf): 87MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 97MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=97MB to avoid

 intermediate flushes or reduce requirements using

 USR regions filters.)

1.4 GB of memory in total,

87 MB per rank!

(Including 2 metric values)

BT-MZ SUMMARY ANALYSIS REPORT FILTERING

• Score report breakdown

by region (w/o additional

metrics)

% scorep-score -r –f ../config/scorep.filt \

 scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/ region

 visit[us]

 - ALL 10,791,335,059 6,589,342,123 2360.04 100.0 0.36 ALL

 - USR 10,754,591,276 6,574,805,745 926.34 39.3 0.14 USR

 - OMP 34,990,128 13,667,328 1241.50 52.6 90.84 OMP

 - COM 1,178,450 725,200 1.97 0.1 2.71 COM

 - MPI 616,168 143,834 190.23 8.1 1322.55 MPI

 - SCOREP 41 16 0.01 0.0 372.15 SCOREP

 * ALL 36,820,329 14,558,235 1433.71 60.7 98.48 ALL-FLT

 + FLT 10,754,555,760 6,574,783,888 926.33 39.3 0.14 FLT

 - OMP 34,990,128 13,667,328 1241.50 52.6 90.84 OMP-FLT

 * COM 1,178,450 725,200 1.97 0.1 2.71 COM-FLT

 - MPI 616,168 143,834 190.23 8.1 1322.55 MPI-FLT

 * USR 35,542 21,857 0.01 0.0 0.28 USR-FLT

 - SCOREP 41 16 0.01 0.0 372.15 SCOREP-FLT

 + USR 3,454,903,374 2,110,313,472 373.15 15.8 0.18 binvcrhs_

 + USR 3,454,903,374 2,110,313,472 218.75 9.3 0.10 matvec_sub_

 + USR 3,454,903,374 2,110,313,472 303.12 12.8 0.14 matmul_sub_

 + USR 149,170,944 87,475,200 14.95 0.6 0.17 lhsinit_

 + USR 149,170,944 87,475,200 9.69 0.4 0.11 binvrhs_

 + USR 112,148,088 68,892,672 6.69 0.3 0.10 exact_solution

Filtered routines
marked with ‘+’

BT-MZ FILTERED SUMMARY MEASUREMENT

 Set new experiment directory

and re-run measurement with

new filter configuration

 Submit job

% cd bin.scorep

% cp ../jobscript/levante/scorep.sbatch .

% vi scorep.sbatch

Score-P measurement configuration

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC

#export SCOREP_METRIC_RUSAGE=ru_stime

#export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss

Run the application

mpirun -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

% sbatch --account=kg0166 scorep.sbatch

SCORE-P FILTERING

• Filtering by source file name

• All regions in files that are excluded

by the filter are ignored

• Filtering by region name

• All regions that are excluded by the

filter are ignored

• Overruled by source file filter for

excluded files

• Apply filter by

• exporting

SCOREP_FILTERING_FILE

environment variable

• Apply filter at

• Run-time

• Compile-time (GCC-plugin only, Intel

in 7.0 release)

• Add cmd-line option --

instrument-filter

• No overhead for filtered regions but

recompilation

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name filter
block using
wildcards

Apply filter

SOURCE FILE NAME FILTER BLOCK

This is a comment

SCOREP_FILE_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE */foo/bar*

 INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

• Keywords

• Case-sensitive

• SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

• Define the source file name filter block

• Block contains EXCLUDE, INCLUDE rules

• EXCLUDE, INCLUDE rules

• Followed by one or multiple white-space separated source file names

• Names can contain bash-like wildcards *, ?, []

• Unlike bash, * may match a string that contains slashes

• EXCLUDE, INCLUDE rules are applied in sequential order

• Regions in source files that are excluded after all rules are evaluated, get filtered

REGION NAME FILTER BLOCK

This is a comment

SCOREP_REGION_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE *

 INCLUDE bar foo

 baz

 main

SCOREP_REGION_NAMES_END

• Keywords

• Case-sensitive

• SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

• Define the region name filter block

• Block contains EXCLUDE, INCLUDE rules

• EXCLUDE, INCLUDE rules

• Followed by one or multiple white-space separated region names

• Names can contain bash-like wildcards *, ?, []

• EXCLUDE, INCLUDE rules are applied in sequential order

• Regions that are excluded after all rules are evaluated, get filtered

REGION NAME FILTER BLOCK, MANGLING

void bar(int* a) {

 *a++;

}

int main() {

 int i = 42;

 bar(&i);

 return 0;

}

• Name mangling

• Filtering based on names seen by the measurement system

• Dependent on compiler

• Actual name may be mangled

• scorep-score names as starting point

(e.g. matvec_sub_)

• Use * for Fortran trailing underscore(s) for portability

• Use ? and * as needed for full signatures or overloading

• Use \ to escape special characters

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

BT-MZ @ LEVANTE

SCALASCA TRACE ANALYSIS

 59

PERFORMANCE ANALYSIS STEPS

• 0.0 Reference preparation for validation

• 1.0 Program instrumentation

• 1.1 Summary measurement collection

• 1.2 Summary analysis report examination

• 2.0 Summary experiment scoring

• 2.1 Summary measurement collection with filtering

• 2.2 Filtered summary analysis report examination

• 3.0 Event trace collection

• 3.1 Event trace examination & analysis

SCALASCA COMMAND – ONE COMMAND FOR (ALMOST)

EVERYTHING

% scalasca
Scalasca 2.6
Toolset for scalable performance analysis of large-scale parallel applications
usage: scalasca [OPTION]... ACTION <argument>...
 1. prepare application objects and executable for measurement:
 scalasca -instrument <compile-or-link-command> # skin (using scorep)
 2. run application under control of measurement system:
 scalasca -analyze <application-launch-command> # scan
 3. interactively explore measurement analysis report:
 scalasca -examine <experiment-archive|report> # square

Options:
 -c, --show-config show configuration summary and exit
 -h, --help show this help and exit
 -n, --dry-run show actions without taking them
 --quickref show quick reference guide and exit
 --remap-specfile show path to remapper specification file and exit
 -v, --verbose enable verbose commentary
 -V, --version show version information and exit

SCALASCA CONVENIENCE COMMAND: SCAN /

SCALASCA -ANALYZE

• Scalasca measurement collection & analysis nexus

% scan
Scalasca 2.6: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]
 where {options} may include:
 -h Help : show this brief usage message and exit.
 -v Verbose : increase verbosity.
 -n Preview : show command(s) to be launched but don't execute.
 -q Quiescent : execution with neither summarization nor tracing.
 -s Summary : enable runtime summarization. [Default]
 -t Tracing : enable trace collection and analysis.
 -a Analyze : skip measurement to (re-)analyze an existing trace.
 -e exptdir : Experiment archive to generate and/or analyze.
 (overrides default experiment archive title)
 -f filtfile : File specifying measurement filter.
 -l lockfile : File that blocks start of measurement.
 -R #runs : Specify the number of measurement runs per config.
 -M cfgfile : Specify a config file for a multi-run measurement.

AUTOMATIC MEASUREMENT CONFIGURATION

• scan configures Score-P measurement by automatically setting some environment variables and

exporting them

• E.g., experiment title, profiling/tracing mode, filter file, …

• Precedence order:

• Command-line arguments

• Environment variables already set

• Automatically determined values

• Also, scan includes consistency checks and prevents corrupting existing experiment directories

• For tracing experiments, after trace collection completes then automatic parallel trace analysis is

initiated

• Uses identical launch configuration to that used for measurement (i.e., the same allocated

compute resources)

SCALASCA CONVENIENCE COMMAND: SQUARE /

SCALASCA -EXAMINE

• Scalasca analysis report explorer (Cube)

% square

Scalasca 2.6: analysis report explorer

usage: square [OPTIONS] <experiment archive | cube file>

 -c <none | quick | full> : Level of sanity checks for newly created reports

 -F : Force remapping of already existing reports

 -f filtfile : Use specified filter file when doing scoring (-s)

 -s : Skip display and output textual score report

 -v : Enable verbose mode

 -n : Do not include idle thread metric

 -S <mean | merge> : Aggregation method for summarization results of

 each configuration (default: merge)

 -T <mean | merge> : Aggregation method for trace analysis results of

 each configuration (default: merge)

 -A : Post-process every step of a multi-run experiment

BT-MZ SUMMARY MEASUREMENT COLLECTION...

• Change to directory

with the Score-P

instrumented

executable and edit the

job script

• Submit the job

% cd bin.scorep

% cp ../jobscript/levante/scalasca.sbatch .

% cat scalasca.sbatch

Scalasca nexus configuration for profiling

#NEXUS=“scalasca –analyze”

Scalasca nexus configuration for profiling

#NEXUS=“scalasca –analyze -t”

Score-P measurement configuration

export SCOREP_FILTERING_FILE=../config/scorep.filt

#export SCOREP_TOTAL_MEMORY=32M

run the application

scalasca -analyze mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

% sbatch --account=kg0166 scalasca.sbatch

Hint:
scan = scalasca –analyze

-s = profile/summary (def)

BT-MZ SUMMARY MEASUREMENT

• Run the application

using the Scalasca

measurement

collection &

analysis nexus

prefixed to launch

command

• Creates experiment

directory:
scorep_bt-mz_C_28x4_sum

S=C=A=N: Scalasca 2.6 runtime summarization

S=C=A=N: ./scorep_bt-mz_C_28x4_sum experiment archive

S=C=A=N: Thu Jun 10 11:48:50 2021: Collect start

mpirun./bt-mz_C.28

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) –

 BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8

 Iterations: 200 dt: 0.000300

 Number of active processes: 28

 [... More application output ...]

S=C=A=N: Thu Jun 10 11:49:02 2021: Collect done (status=0) 12s

S=C=A=N: ./scorep_bt-mz_C_28x4_sum complete.

BT-MZ SUMMARY ANALYSIS REPORT EXAMINATION

• Score summary analysis report

• Post-processing and interactive exploration with Cube

• The post-processing derives additional metrics and generates a structured

metric hierarchy

% square scorep_bt-mz_B_28x4_sum

INFO: Displaying ./scorep_bt-mz_B_28x4_sum/summary.cubex...

[GUI showing summary analysis report]

% square -s scorep_bt-mz_B_28x4_sum

INFO: Post-processing runtime summarization report (profile.cubex)...

INFO: Score report written to ./scorep_bt-mz_B_28x4_sum/scorep.score

Hint:

Copy ‘summary.cubex’ to local

system (laptop) using ‘scp’ to

improve responsiveness of GUI

POST-PROCESSED SUMMARY ANALYSIS REPORT

Split base metrics into

more specific metrics

PERFORMANCE ANALYSIS STEPS

• 0.0 Reference preparation for validation

• 1.0 Program instrumentation

• 1.1 Summary measurement collection

• 1.2 Summary analysis report examination

• 2.0 Summary experiment scoring

• 2.1 Summary measurement collection with filtering

• 2.2 Filtered summary analysis report examination

• 3.0 Event trace collection

• 3.1 Event trace examination & analysis

BT-MZ TRACE MEASUREMENT COLLECTION...

• Change to

directory with the

Score-P

instrumented

executable and edit

the job script

• Add “-t” to the

scan command

• Submit the job

% cd bin.scorep

% cp ../jobscript/levante/scalasca.sbatch .

% vim scalasca.sbatch

Scalasca nexus configuration for profiling

#NEXUS=“scalasca –analyze”

Scalasca nexus configuration for profiling

#NEXUS=“scalasca –analyze -t”

Score-P measurement configuration

export SCOREP_FILTERING_FILE=../config/scorep.filt

export SCOREP_TOTAL_MEMORY=46M

run the application

scalasca –analyze -t mpiexec -n $SLURM_NTASKS ./bt-mz_$CLASS.$PROCS

% sbatch --account=kg0166 scalasca.sbatch

BT-MZ TRACE MEASUREMENT ... COLLECTION

• Starts measurement with

collection of trace files …

S=C=A=N: Scalasca 2.6 trace collection and analysis
S=C=A=N: Thu Jun 10 12:05:30 2021: Collect start
mpirun./bt-mz_C.28

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) – BT-MZ MPI+OpenMP \
>Benchmark

 Number of zones: 8 x 8
 Iterations: 200 dt: 0.000300
 Number of active processes: 28

 [... More application output ...]

S=C=A=N: Thu Jun 10 12:05:44 2021: Collect done (status=0) 14s

BT-MZ TRACE MEASUREMENT ... ANALYSIS

• Continues with

automatic (parallel)

analysis of trace files

…
S=C=A=N: Thu Jun 10 12:05:44 2021: Analyze start
 mpirun scout.hyb --time-correct \
> ./scorep_bt-mz_C_28x4_trace/traces.otf2

SCOUT (Scalasca 2.6)

Analyzing experiment archive ./scorep_bt-mz_C_28x4_trace/traces.otf2

Opening experiment archive ... done (0.002s).
Reading definition data ... done (0.004s).
Reading event trace data ... done (0.113s).
Preprocessing ... done (0.179s).
Timestamp correction ... done (0.431s).
Analyzing trace data ... done (5.174s).
Writing analysis report ... done (0.175s).

Max. memory usage : 422.312MB

 # passes : 1
 # violated : 0

Total processing time : 6.140s
S=C=A=N: Thu Jun 10 12:05:51 2021: Analyze done (status=0) 7s

BT-MZ TRACE ANALYSIS REPORT EXPLORATION

• Produces trace analysis report in the experiment directory containing trace-based wait-

state metrics

% square scorep_bt-mz_C_28x4_trace
INFO: Post-processing runtime summarization report (profile.cubex)...
INFO: Post-processing trace analysis report (scout.cubex)...
INFO: Displaying ./scorep_bt-mz_C_28x4_trace/trace.cubex...

[GUI showing trace analysis report]

Hint:

Run ‘square -s’ first and then copy

‘trace.cubex’ to local system (laptop)

using ‘scp’ to improve responsiveness

of GUI

POST-PROCESSED TRACE ANALYSIS REPORT

Additional trace-based

 metrics in metric hierarchy

ONLINE METRIC DESCRIPTION

Access online metric

description via context

menu

ONLINE METRIC DESCRIPTION

CRITICAL-PATH ANALYSIS

Critical-path profile shows

wall-clock time impact

CRITICAL-PATH ANALYSIS

Critical-path imbalance

highlights inefficient

parallelism

PATTERN INSTANCE STATISTICS

Access pattern instance

statistics via context menu

Click to get

statistics details

BT-MZ @ LEVANTE

VAMPIR

7. September 2021 80

VAMPIR EVENT TRACE VISUALIZER

• Offline trace visualization for Score-Ps OTF2 trace files

• Visualization of MPI, OpenMP and application events:

• All diagrams highly customizable (through context menus)

• Large variety of displays for ANY part of the trace

• http://www.vampir.eu

• Advantage:

• Detailed view of dynamic application behavior

• Disadvantage:

• Completely manual analysis

• Too many details can hide the relevant parts

EVENT TRACE VISUALIZATION WITH VAMPIR

 82

• Visualization of dynamic runtime behaviour at any level of

detail along with statistics and performance metrics

• Alternative and supplement to automatic analysis

• Typical questions that Vampir helps to answer

• What happens in my application execution during a

given time in a given process or thread?

• How do the communication patterns of my application

execute on a real system?

• Are there any imbalances in computation, I/O or

memory usage and how do they affect the parallel

execution of my application?

 Timeline charts

 Application activities and

 communication along a time axis

 Summary charts

 Quantitative results for the currently

selected time interval

VAMPIR PERFORMANCE CHARTS

 83

Timeline Charts

 Master Timeline all threads’ activities

 Process Timeline single thread’s activities

 Summary Timeline all threads’ function call statistics

 Performance Radar all threads’ performance metrics

 Counter Data Timeline single threads’ performance metrics

 I/O Timeline all threads’ I/O activities

Summary Charts

 Function Summary

 Message Summary

 I/O Summary

Process Summary

Communication Matrix View

Call Tree

VAMPIR DISPLAYS

BT-MZ TRACE VISUALIZATION

• Visualize the generated trace files with Vampir

% vampir scorep_bt-mz_C_28x4_trace/traces.otf2

[GUI showing trace timeline]

VAMPIR START VIEW

 86

VAMPIR ZOOM

 87

