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DISCLAIMER 

 

Tools will not automatically make you, your 

applications or computer systems more 

productive. 

However, they can help you understand how 

your parallel code executes and when / where 

it's necessary to work on correctness and 

performance issues. 
 



PERFORMANCE: AN OLD PROBLEM 
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“The most constant difficulty in contriving 

the engine has arisen from the desire to 

reduce the time in which the calculations 

were executed to the shortest which is 

possible.” 
Charles Babbage 

1791 – 1871    

Difference Engine 



TODAY: THE “FREE LUNCH” IS OVER 

■ Moore's law is still in charge, but 

■ Clock rates no longer increase 

■ Performance gains only through 
increased parallelism 

■ Optimizations of applications more difficult 

■ Increasing application complexity 

■ Multi-physics 

■ Multi-scale 

■ Increasing machine complexity 

■ Hierarchical networks / memory 

■ More CPUs / multi-core 

■ Accelerators 

■ Modular supercomputer architecture 

 Every doubling of scale reveals a new bottleneck! 
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TUNING BASICS 

• Successful performance engineering is a combination of 

• Careful setting of various tuning parameters 

• The right algorithms and libraries 

• Compiler flags and directives 

• Correct machine usage (mapping and bindings) 

• … 

• Thinking !!! 

• Measurement is better than guessing 

• To determine performance bottlenecks 

• To compare alternatives 

• To validate tuning decisions and optimizations 

• After each step! 

• Modeling is extremely useful but very difficult and rarely available 

• Allows to evaluate performance impact of optimization without implementing it 

• Simplifies search in large parameter space 
 

 



PERFORMANCE ENGINEERING WORKFLOW 

 

• Calculation of metrics 

• Identification of performance problems 

• Presentation of results 

 

• Modifications intended to 
eliminate/reduce performance problem 

• Collection of performance data 

• Aggregation of performance data 

• Prepare application with symbols 

• Insert extra code (probes/hooks) 

Preparation Measurement 

Analysis Optimization 



PERFORMANCE METRICS 

• What can be measured? 

• A count of how often an event occurs 

• E.g., the number of MPI point-to-point messages sent 

• The duration of some interval 

• E.g., the time spent these send calls 

• The size of some parameter 

• E.g., the number of bytes transmitted by these calls 

 

• Derived metrics 

• E.g., rates / throughput 

• Needed for normalization 



EXAMPLE METRICS 

• Execution time 

• Number of function calls 

• CPI 

• CPU cycles per instruction 

• FLOPS 

• Floating-point operations executed per second 

“math” Operations? 

   HW Operations? 

      HW Instructions? 

            32-/64-bit? … 



EXECUTION TIME 

• Wall-clock time 

• Includes waiting time: I/O, memory, other system activities 

• In time-sharing environments also the time consumed by other applications 

• CPU time 

• Time spent by the CPU to execute the application 

• Does not include time the program was context-switched out 

• Problem: Does not include inherent waiting time (e.g., I/O) 

• Problem: Portability? What is user, what is system time? 

 

• Problem: Execution time is non-deterministic 

• Use mean or minimum of several runs 



CLASSIFICATION OF MEASUREMENT TECHNIQUES 

• How are performance measurements triggered? 

• Sampling 

• Code instrumentation 

 

• How is performance data recorded? 

• Profiling / Runtime summarization 

• Tracing 

 

• How is performance data analyzed? 

• Online – No suitable tools anymore 

• Post mortem 



SAMPLING 

• Running program is periodically interrupted to take measurement 

• Timer interrupt, OS signal, or HWC overflow 

• Service routine examines return-address stack 

• Addresses are mapped to routines using symbol table information 

• Statistical inference of program behavior 

• Not very detailed information on highly volatile metrics 

• Requires long-running applications 

• Works with unmodified executables 

 

Time 

main foo(0) foo(1) foo(2) int main() 
{ 
  int i; 
 
  for (i=0; i < 3; i++) 
    foo(i); 
 
  return 0; 
} 
 
void foo(int i) 
{ 
 
  if (i > 0) 
    foo(i – 1); 
 
} 
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INSTRUMENTATION 

• Measurement code is inserted such that every event of 
interest is captured directly 

• Can be done in various ways 

• Advantage: 

• Much more detailed information 

• Disadvantage: 

• Processing of source-code / executable 
necessary 

• Large relative overheads for small functions 

 

Time 

Measurement int main() 
{ 
  int i; 
 
  for (i=0; i < 3; i++) 
    foo(i); 
 
  return 0; 
} 
 
void foo(int i) 
{ 
 
  if (i > 0) 
    foo(i – 1); 
 
} 
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main foo(0) foo(1) foo(2) 

Enter(“main”); 

Leave(“main”); 

Enter(“foo”); 

Leave(“foo”); 



INSTRUMENTATION TECHNIQUES 

• Static instrumentation 

• Program is instrumented prior to execution 

• Dynamic instrumentation 

• Program is instrumented at runtime 

 

• Code is inserted 

• Manually 

• Automatically 

• By a preprocessor / source-to-source translation tool 

• By a compiler 

• By linking against a pre-instrumented library / runtime system 

• By binary-rewrite / dynamic instrumentation tool 



CRITICAL ISSUES 

• Accuracy 

• Intrusion overhead 

• Measurement itself needs time and thus lowers performance 

• Perturbation 

• Measurement alters program behaviour 

• E.g., memory access pattern 

• Accuracy of timers & counters 

• Granularity 

• How many measurements? 

• How much information / processing during each measurement? 

 

• Tradeoff: Accuracy vs. Expressiveness of data 

 



CLASSIFICATION OF MEASUREMENT TECHNIQUES 

• How are performance measurements triggered? 

• Sampling 

• Code instrumentation 

 

• How is performance data recorded? 

• Profiling / Runtime summarization 

• Tracing 

 

• How is performance data analyzed? 

• Online 

• Post mortem 



PROFILING / RUNTIME SUMMARIZATION 

• Recording of aggregated information 

• Total, maximum, minimum, … 

• For measurements 

• Time 

• Counts 

• Function calls 

• Bytes transferred 

• Hardware counters 

• Over program and system entities 

• Functions, call sites, basic blocks, loops, … 

• Processes, threads 

 

• Profile = summarization of events over execution interval 



TYPES OF PROFILES 

• Flat profile 

• Shows distribution of metrics per routine / instrumented region 

• Calling context is not taken into account 

• Call-path profile 

• Shows distribution of metrics per executed call path 

• Sometimes only distinguished by partial calling context 

(e.g., two levels) 

• Special-purpose profiles 

• Focus on specific aspects, e.g., MPI calls or OpenMP constructs 

• Comparing processes/threads 

 



TRACING 

• Recording detailed information about significant points (events) during execution of the program 

• Enter / leave of a region (function, loop, …) 

• Send / receive a message, … 

• Save information in event record 

• Timestamp, location, event type 

• Plus event-specific information (e.g., communicator, 

sender / receiver, …) 

• Abstract execution model on level of defined events 

 

• Event trace = Chronologically ordered sequence of event records 



58 ENTER foo 

62 SEND to B 

64 EXIT foo 

... 

... 

Local trace A 

Local trace B 

60 ENTER bar 

68 RECV from A 

69 EXIT bar 

... 

... 

Event tracing 

void foo() { 
   
  ... 
   
  send(B, tag, buf); 
  ... 
   
} 

Process A 

void bar()  { 
   
  ... 
  recv(A, tag, buf); 
   
  ... 
   
} 

Process B 

MONITOR 

MONITOR 
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void bar() { 
  trc_enter("bar"); 
  ... 
  recv(A, tag, buf); 
  trc_recv(A); 
  ... 
  trc_exit("bar"); 
} 

void foo() { 
  trc_enter("foo"); 
  ... 
  trc_send(B); 
  send(B, tag, buf); 
  ... 
  trc_exit("foo"); 
} 

instrument 

Global trace view  

58 A ENTER foo 

60 B ENTER bar 

62 A SEND to B 

64 A EXIT foo 

68 B RECV from A 

... 

69 B EXIT bar 

... 

(Virtual merge) 



TRACING PROS & CONS 

• Tracing advantages 

• Event traces preserve the temporal and spatial relationships among individual events 

( context) 

• Allows reconstruction of dynamic application behavior on any required level of 

abstraction 

• Most general measurement technique 

• Profile data can be reconstructed from event traces 

• Disadvantages 

• Traces can very quickly become extremely large 

• Writing events to file at runtime may causes perturbation 



TECHNOLOGIES AND THEIR INTEGRATION 

SCALASCA 

SCORE-P / 

        EXTRAE 

Optimization 

Visual trace  

analysis 

Automatic  

profile & trace   

analysis  

Debugging,  

error & anomaly  

detection 

Hardware  

monitoring 

 

Execution 

      VAMPIR     PARAVER 

PAPI 

MUST / 

ARCHER 

PERISCOPE 
KCACHEGRIND 

PTF /  

RUBIK / 

MAQAO 

MEMCHECKER / 

SPINDLE / SIONLIB 

STAT 

MAP/PR / MPIP /      

O|SS / MAQAO / 

LIKWID 

DDT 

JUBE 

EXTRA-P TAU 



REMARK: NO SINGLE SOLUTION IS SUFFICIENT! 

A combination of different methods, tools and techniques 

is typically needed! 



SCORE-P AND SCALASCA 



SCORE-P 

• Infrastructure for instrumentation and performance measurements 

• Instrumented application can be used to produce several results: 

• Call-path profiling:  CUBE4 data format used for data exchange 

• Event-based tracing:  OTF2 data format used for data exchange 

 

• Supported parallel paradigms: 

• Multi-process:   MPI, SHMEM 

• Thread-parallel:   OpenMP, Pthreads 

• Accelerator-based:   CUDA, OpenCL, OpenACC, ROCm, Kokkos 

 

• Open Source; portable and scalable to all major HPC systems 

• Initial project funded by BMBF 

• Further developed in multiple 3rd-party funded projects 
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SCORE-P OVERVIEW 

Application 

Vampir Scalasca TAU 

Accelerator-based 

parallelism 
(CUDA, OpenACC, 

OpenCL, ROCm, Kokkos) 

                       Score-P measurement infrastructure 

Event traces (OTF2) 

Sampling 

interrupts 

(PAPI, PERF) 

Call-path profiles 
(CUBE4, TAU) 

Process-level parallelism 
(MPI, SHMEM) 

Thread-level parallelism 
(OpenMP, Pthreads) 

Source code 

instrumentation 

(Compiler, PDT, User) 

CUBE TAUdb 

Hardware counter 

(PAPI, rusage, PERF, plugins) 

I/O Activity Recording 
(Posix I/O,  

MPI-IO) 

Instrumentation wrapper 

Extra-P 



CUBE 

• Parallel program analysis report exploration tools 

• Libraries for XML+binary report reading & writing 

• Algebra utilities for report processing 

• GUI for interactive analysis exploration 

• Requires Qt4 ≥4.6 or Qt 5 

 

• Originally developed as part of the Scalasca toolset 

 

• Now available as a separate component 

• Can be installed independently of Score-P,  
e.g., on laptop or desktop 

• Latest release: Cube v4.6 (April 2021) 
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Location 

ANALYSIS PRESENTATION AND EXPLORATION - CUBE 

• Representation of values (severity matrix) 

on three hierarchical axes 

• Performance property (metric) 

• Call path (program location) 

• System location (process/thread) 

 

• Three coupled tree browsers 

 

• Cube displays severities 

• As value: for precise comparison 

• As colour: for easy identification of hotspots 

• Inclusive value when closed & exclusive value when expanded 

• Customizable via display modes 

 

 



How is it 

distributed across 

the processes/threads? 

What kind of 

performance 

metric? 

Where is it in the 

source code? 

In what context? 

ANALYSIS PRESENTATION 



AUTOMATIC TRACE ANALYSIS 

• Idea 

• Automatic search for patterns of inefficient behaviour 

• Classification of behaviour & quantification of significance 

• Identification of delays as root causes of inefficiencies 

 

 

 

 

 

 

 

• Guaranteed to cover the entire event trace 

• Quicker than manual/visual trace analysis 

• Parallel replay analysis exploits available memory & processors to deliver scalability 
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Location 

Low-level 

event trace 

High-level 

result 
Analysis  



SCALASCA TRACE TOOLS: OBJECTIVE 

• Development of a scalable trace-based performance analysis toolset 

for the most popular parallel programming paradigms 

• Current focus: MPI, OpenMP, and (to a limited extend) POSIX threads 

 

• Specifically targeting large-scale parallel applications 

• Demonstrated scalability up to 1.8 million parallel threads 

• Of course also works at small/medium scale 

 

• Latest release: 

• Scalasca v2.6 coordinated with Score-P v7.0 (April 2021) 



SCALASCA TRACE TOOLS: FEATURES 

• Open source, 3-clause BSD license 

• Fairly portable 

• IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX systems, 
Linux clusters (x86, Power, ARM), Intel Xeon Phi, ... 

• Uses Score-P instrumenter & measurement libraries 

• Scalasca v2 core package focuses on trace-based analyses 

• Supports common data formats 

• Reads event traces in OTF2 format 

• Writes analysis reports in CUBE4 format 

• Current limitations: 

• Unable to handle traces 

• with MPI thread level exceeding MPI_THREAD_FUNNELED 

• containing Memory events, CUDA/OpenCL device events (kernel, memcpy), SHMEM, or OpenMP 
nested parallelism 

• PAPI/rusage metrics for trace events are ignored 
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Scalasca trace analysis 

SCALASCA WORKFLOW 

Instr. 

target 

application  

Measurement 

library 

 
HWC 

Parallel wait-state 

search 
Wait-state 

report 

Local event 

traces 

Summary 

report 

Optimized measurement configuration 

Instrumenter 

compiler / linker 

Instrumented 

executable 

Source 

modules 

R
e

p
o

rt
  

m
a
n
ip

u
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o
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Which problem? 
Where in the 

program? 

Which 

process? 



 

 

 

 

 

 

 

 

 

 

• Waiting time caused by a blocking receive operation posted earlier than the corresponding send 

• Applies to blocking as well as non-blocking communication 

time 

lo
c
a
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n
 MPI_Recv 

MPI_Send 

time 

lo
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a
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n

 MPI_Recv 

MPI_Send 

MPI_Irecv MPI_Wait 

MPI_Send 

time 

lo
c
a

tio
n

 MPI_Recv MPI_Irecv 

MPI_Isend 

MPI_Wait 

MPI_Isend MPI_Wait MPI_Wait 

EXAMPLE: “LATE SENDER” WAIT STATE 



EXAMPLE: CRITICAL PATH 

• Shows call paths and processes/threads that are responsible for the program’s 

wall-clock runtime 

• Identifies good optimization candidates and parallelization bottlenecks 

time 

 Recv 

 Recv 

lo
c
a

tio
n

 

 foo 

 foo 

 foo 

 bar 

Send 

 bar 

 bar 

Send  foobar 

 foobar 

 foobar 

 Recv 

 Recv 

Computation Communication Wait state Critical path 



EXAMPLE: ROOT-CAUSE ANALYSIS 

• Classifies wait states into direct and indirect (i.e., caused by other wait states) 

• Identifies delays (excess computation/communication) as root causes of wait states 

• Attributes wait states as delay costs 

time 

 Recv 

 Recv 

lo
c
a

tio
n

 

 foo 

 foo 

 foo 

Send 

Send  Recv 

 Recv 

Computation 

Communication 

Wait state 

Delay 

Direct 

Direct Indirect 



TRACE ANALYSIS REPORT 

 

Additional trace-based 

 metrics in metric hierarchy 



EVENT TRACE VISUALIZATION WITH VAMPIR 

      37 

• Visualization of dynamic runtime behaviour at any level of 

detail along with statistics and performance metrics 

• Alternative and supplement to automatic analysis 

 

• Typical questions that Vampir helps to answer 

• What happens in my application execution during a 

given time in a given process or thread? 

• How do the communication patterns of my application 

execute on a real system? 

• Are there any imbalances in computation, I/O or 

memory usage and how do they affect the parallel 

execution of my application? 

 

 

 Timeline charts 

 Application activities and  

   communication along a time axis 

 

 

 

 

 Summary charts 

 Quantitative results for the currently 

selected time interval 

 



VAMPIR DISPLAYS 



SCORE-P/CUBE CASE STUDY - HEMELB 
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HEMELB (SUPERMUC-NG: NO GPUS) 

• 3D macroscopic blood flow in human arterial system developed by UC London (UK) 

• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions 

• exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine 

• HemeLB open-source code and test case: www.hemelb.org 

• C++ parallelized with MPI [+ CUDA unused] 

• Intel Studio 2019u4 compiler and MPI library (v19.0.4.243) 

• configured with 2 ‘reader’ processes (intermediate MPI file writing disabled) 

• MPI-3 shared-memory model employed within compute nodes 
to reduce memory requirements when distributing lattice blocks from reader processes 

• Focus of analysis 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry 

• 6.4µm lattice resolution (21.15 GiB): 10,154,448,502 lattice sites 

• Executed on SuperMUC-NG Lenovo ThinkSystem SD650 (LRZ): 

• 2x 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz 

• 48 MPI processes/node, 6452 (of 6480) compute nodes: 309,696 MPI processes 

• 190x speed-up from 864 cores: 80% scaling efficiency to over 100,000 cores 

⇒ Identification & quantification of impact of load balance and its variation 



HEMELB@SNG STRONG SCALING OF FOA 

RUNSIMULATION 

[Execution of 9,216 processes on 192 compute nodes not possible due to insufficient compute nodes with adequate memory in ‘fat’ partition (768 GiB vs. regular 96 GiB node memory] 



HEMELB@SNG STRONG SCALING EFFICIENCY OF FOA 

RUNSIMULATION 

Global scaling efficiency fairly good around 80%, before degrading at larger scales 

• Parallel efficiency deteriorating following Load balance efficiency 

• Communication efficiency excellent throughout 

• Computation scaling (relative to 1152 processes) very good except at largest scale 

• Degradation of Instructions scaling partially compensated by improving IPC scaling 

[POP CoE scaling efficiency model: www.pop-coe.eu] 



INITIAL TREE PRESENTATION: TIME OF MPI_GATHER PER  

MPI PROCESS 



TOPOLOGICAL PRESENTATION: 

STALLS_MEM_ANY FOR HANDLEACTORS 



ADVISOR: POP EFFICIENCY ASSESSMENT FOR 

RUNSIMULATION 



HEMELB (JUWELS-VOLTA) 

• 3D macroscopic blood flow in human arterial system developed by UC London (UK) 

• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions 

• exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine 

• HemeLB open-source code and test case: www.hemelb.org 

• C++ parallelized with MPI + CUDA (in development) 

• GCC/8.3.0 compiler, CUDA/10.1.105 and ParaStationMPI/5.4 library 

• configured with 2 ‘reader’ processes and intermediate MPI file writing 

• rank 0 ‘monitor’ process doesn’t participate in simulation 

 

 

• Focus of analysis 2,000 time-step (each 100µs) simulation of CBM2019_Arteries_patched geometry 

• 1.78 GiB: 66,401,494 lattice sites, 1+38 iolets 

• Executed on JUWELS-Volta (@JSC): 

• 2x 20-core Intel Xeon Platinum 8168 (‘Skylake’) CPUs + 4 Nvidia V100 ‘Volta’ GPUs 

• 4* MPI processes/node (one per GPU), 32 (of 56) compute nodes: 129 MPI processes 

⇒ Identification & quantification of impact of load balance and its variation 



TREE: TIME FOR ASYNCH. CUDA KERNELS ON 

SEPARATE CUDA STREAMS 



TOPO: TIME FOR ASYNCH. CUDA KERNELS ON 

SEPARATE CUDA STREAMS 



TOPO: TIME FOR MPI FILE WRITING ON CPU 

VARIES PER MPI PROCESS 



TOPO: TIME FOR CUDA ASYNCHRONOUS MEMORY 

COPIES IS IMBALANCED 



HEMELB@JUWELS-VOLTA STRONG SCALING OF 

FOA RUNSIMULATION 
• Reference execution with 8ppn 

• multiple processes offloading GPU 
kernels generally unproductive 

• Comparison of versions (4ppn) 

• v1.20a generally better 

• Synchronous MPI file writing 
is the primary bottleneck 

• CUDA kernels on GPUs 

• less than half of Simulation time 
(therefore GPUs mostly idle) 

• total kernel time scales very well 
(0.93 scaling efficiency) 

• load balance deteriorates 
(0.95 for single node,  
0.50 for 32 nodes) 



HEMELB@JUWELS/VOLTA STRONG SCALING 

EFFICIENCY OF RUNSIMULATION 

Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused) 

• Single (quad-GPU) node already suffers significant communication inefficiency 

• includes MPI file writing, but doesn’t degrade much as additional nodes are included 

• Load balance of GPUs deteriorates progressively 

• GPU computation scaling remains reasonably good 

[POP CoE scaling efficiency model: www.pop-coe.eu] 



HEMELB@JUWELS-VOLTA STRONG SCALING OF FOA 

RUNSIMULATION 

• CPU+GPU time breakdown 

• CUDA kernels on GPUs 

• less than half of Simulation time 
(therefore GPUs mostly idle) 

• total kernel time scales very well (0.87 
scaling efficiency) 

• MPI processes on CPUs 

• computation time decreases 

• CUDA synchronization time fairly 
constant, but time for memory 
management increases somewhat 

• MPI communication time dominates, 
with much more time for file writing 
with 16+ nodes 



SCALASCA CASE STUDY – TEA LEAF 

28/04/2015 54 



CASE STUDY: TEALEAF 

• HPC mini-app developed by the UK Mini-App Consortium 

• Solves the linear 2D heat conduction equation on a spatially decomposed regular grid 

using a 5 point stencil with implicit solvers 

• Part of the Mantevo 3.0 suite 

• Available on GitHub: https://uk-mac.github.io/TeaLeaf/ 

 

• Measurements of TeaLeaf reference v1.0 taken on Jureca cluster @ JSC 

• Using Intel 19.0.3 compilers, Intel MPI 2019.3, Score-P 5.0, and Scalasca 2.5 

• Run configuration 

• 8 MPI ranks with 12 OpenMP threads each 

• Distributed across 4 compute nodes (2 ranks per node) 

• Test problem “5”: 4000 × 4000 cells, CG solver 



SCALASCA ANALYSIS REPORT 

EXPLORATION (OPENING VIEW) 

Additional top-level 

metrics produced by the 

trace analysis… 



SCALASCA WAIT-STATE METRICS 

…plus additional wait-

state metrics as part of 

the “Time” hierarchy 



TEALEAF SCALASCA REPORT ANALYSIS (I) 

While MPI 

communication time 

and wait states are 

small (~0.6% of the total 

execution time)… 



TEALEAF SCALASCA REPORT ANALYSIS (II) 

…they directly cause a 

significant amount of 

the OpenMP thread 

idleness 



TEALEAF SCALASCA REPORT ANALYSIS 

(III) 

The “Wait at NxN” 

collective wait states 

are mostly caused by 
the first 2 OpenMP do 

loops of the solver (on 

ranks 5 & 1, resp.)… 



TEALEAF SCALASCA REPORT ANALYSIS 

(IV) 

…while the MPI point-

to-point wait states are 

caused by the 3rd solver 
do loop (on rank 1) and 

two loops in the halo 

exchange 



TEALEAF SCALASCA REPORT ANALYSIS (V) 

Various OpenMP do 

loops (incl. the solver 

loops) also cause 

OpenMP thread 

idleness on other ranks 

via propagation 



TEALEAF SCALASCA REPORT ANALYSIS 

(VI) 

The Critical Path also 

highlights the three 

solver loops… 



TEALEAF SCALASCA REPORT ANALYSIS 

(VII) 

…with imbalance (time 

on critical path above 

average) mostly in the 

first two loops and MPI 

communication 



TEALEAF SCALASCA REPORT ANALYSIS 

(VIII) 

Computation time of 

1st… 



TEALEAF SCALASCA REPORT ANALYSIS 

(IX) 

…and 2nd do loop 

mostly balanced within 

each rank, but vary 

considerably across 

ranks… 



TEALEAF SCALASCA REPORT ANALYSIS (X) 

…while the 3rd do loop 

also shows imbalance 

within each rank 



TEALEAF ANALYSIS SUMMARY 

• The first two OpenMP do loops of the solver are well balanced within a rank, 
but are imbalanced across ranks 

  Requires a global load balancing strategy 

• The third OpenMP do loop, however, is imbalanced within ranks, 

• causing direct “Wait at OpenMP Barrier” wait states, 

• which cause indirect MPI point-to-point wait states, 

• which in turn cause OpenMP thread idleness 

  Low-hanging fruit 

 

• Adding a SCHEDULE(guided) clause reduced 

• the MPI point-to-point wait states by ~66% 

• the MPI collective wait states by ~50% 

• the OpenMP “Wait at Barrier” wait states by ~55% 

• the OpenMP thread idleness by ~11% 

  Overall runtime (wall-clock) reduction by ~5% 



SUMMARY 



TAKE AWAY MESSAGES 

• Many performance analysis tools exist - for a reason 

• Different measurment and analysis techniques 

• Instrumentation vs. Sampling 

• Profiling vs. Tracing 

• Different hardware support 

• Vendor specific tools, e.g. NVIDIA NSIGHT COMPUTE, Intel VTune 

• Verndor agnostic tools, e.g. Score-P ecosystem, TAU, HPCToolkit 
 

• Tools don‘t automagically increase performance 

• Performance analysis is a daunting task, requires experience  

• Performance tuning requires domain and architecture knowledge 

 Successful performance engineering often is a collaborative effort 

 


