
PERFORMANCE ANALYSIS IN A NUTSHELL

OCTOBER 13, 2022 I MICHAEL KNOBLOCH

AN INTRO WITH SCORE-P, SCALASCA, AND VAMPIR

DISCLAIMER

Tools will not automatically make you, your

applications or computer systems more

productive.

However, they can help you understand how

your parallel code executes and when / where

it's necessary to work on correctness and

performance issues.

PERFORMANCE: AN OLD PROBLEM

3

“The most constant difficulty in contriving

the engine has arisen from the desire to

reduce the time in which the calculations

were executed to the shortest which is

possible.”
Charles Babbage

1791 – 1871

Difference Engine

TODAY: THE “FREE LUNCH” IS OVER

■ Moore's law is still in charge, but

■ Clock rates no longer increase

■ Performance gains only through
increased parallelism

■ Optimizations of applications more difficult

■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity

■ Hierarchical networks / memory

■ More CPUs / multi-core

■ Accelerators

■ Modular supercomputer architecture

 Every doubling of scale reveals a new bottleneck!

4

TUNING BASICS

• Successful performance engineering is a combination of

• Careful setting of various tuning parameters

• The right algorithms and libraries

• Compiler flags and directives

• Correct machine usage (mapping and bindings)

• …

• Thinking !!!

• Measurement is better than guessing

• To determine performance bottlenecks

• To compare alternatives

• To validate tuning decisions and optimizations

• After each step!

• Modeling is extremely useful but very difficult and rarely available

• Allows to evaluate performance impact of optimization without implementing it

• Simplifies search in large parameter space

PERFORMANCE ENGINEERING WORKFLOW

• Calculation of metrics

• Identification of performance problems

• Presentation of results

• Modifications intended to
eliminate/reduce performance problem

• Collection of performance data

• Aggregation of performance data

• Prepare application with symbols

• Insert extra code (probes/hooks)

Preparation Measurement

Analysis Optimization

PERFORMANCE METRICS

• What can be measured?

• A count of how often an event occurs

• E.g., the number of MPI point-to-point messages sent

• The duration of some interval

• E.g., the time spent these send calls

• The size of some parameter

• E.g., the number of bytes transmitted by these calls

• Derived metrics

• E.g., rates / throughput

• Needed for normalization

EXAMPLE METRICS

• Execution time

• Number of function calls

• CPI

• CPU cycles per instruction

• FLOPS

• Floating-point operations executed per second

“math” Operations?

 HW Operations?

 HW Instructions?

 32-/64-bit? …

EXECUTION TIME

• Wall-clock time

• Includes waiting time: I/O, memory, other system activities

• In time-sharing environments also the time consumed by other applications

• CPU time

• Time spent by the CPU to execute the application

• Does not include time the program was context-switched out

• Problem: Does not include inherent waiting time (e.g., I/O)

• Problem: Portability? What is user, what is system time?

• Problem: Execution time is non-deterministic

• Use mean or minimum of several runs

CLASSIFICATION OF MEASUREMENT TECHNIQUES

• How are performance measurements triggered?

• Sampling

• Code instrumentation

• How is performance data recorded?

• Profiling / Runtime summarization

• Tracing

• How is performance data analyzed?

• Online – No suitable tools anymore

• Post mortem

SAMPLING

• Running program is periodically interrupted to take measurement

• Timer interrupt, OS signal, or HWC overflow

• Service routine examines return-address stack

• Addresses are mapped to routines using symbol table information

• Statistical inference of program behavior

• Not very detailed information on highly volatile metrics

• Requires long-running applications

• Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

INSTRUMENTATION

• Measurement code is inserted such that every event of
interest is captured directly

• Can be done in various ways

• Advantage:

• Much more detailed information

• Disadvantage:

• Processing of source-code / executable
necessary

• Large relative overheads for small functions

Time

Measurement int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

INSTRUMENTATION TECHNIQUES

• Static instrumentation

• Program is instrumented prior to execution

• Dynamic instrumentation

• Program is instrumented at runtime

• Code is inserted

• Manually

• Automatically

• By a preprocessor / source-to-source translation tool

• By a compiler

• By linking against a pre-instrumented library / runtime system

• By binary-rewrite / dynamic instrumentation tool

CRITICAL ISSUES

• Accuracy

• Intrusion overhead

• Measurement itself needs time and thus lowers performance

• Perturbation

• Measurement alters program behaviour

• E.g., memory access pattern

• Accuracy of timers & counters

• Granularity

• How many measurements?

• How much information / processing during each measurement?

• Tradeoff: Accuracy vs. Expressiveness of data

CLASSIFICATION OF MEASUREMENT TECHNIQUES

• How are performance measurements triggered?

• Sampling

• Code instrumentation

• How is performance data recorded?

• Profiling / Runtime summarization

• Tracing

• How is performance data analyzed?

• Online

• Post mortem

PROFILING / RUNTIME SUMMARIZATION

• Recording of aggregated information

• Total, maximum, minimum, …

• For measurements

• Time

• Counts

• Function calls

• Bytes transferred

• Hardware counters

• Over program and system entities

• Functions, call sites, basic blocks, loops, …

• Processes, threads

• Profile = summarization of events over execution interval

TYPES OF PROFILES

• Flat profile

• Shows distribution of metrics per routine / instrumented region

• Calling context is not taken into account

• Call-path profile

• Shows distribution of metrics per executed call path

• Sometimes only distinguished by partial calling context

(e.g., two levels)

• Special-purpose profiles

• Focus on specific aspects, e.g., MPI calls or OpenMP constructs

• Comparing processes/threads

TRACING

• Recording detailed information about significant points (events) during execution of the program

• Enter / leave of a region (function, loop, …)

• Send / receive a message, …

• Save information in event record

• Timestamp, location, event type

• Plus event-specific information (e.g., communicator,

sender / receiver, …)

• Abstract execution model on level of defined events

• Event trace = Chronologically ordered sequence of event records

58 ENTER foo

62 SEND to B

64 EXIT foo

...

...

Local trace A

Local trace B

60 ENTER bar

68 RECV from A

69 EXIT bar

...

...

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

(Virtual merge)

TRACING PROS & CONS

• Tracing advantages

• Event traces preserve the temporal and spatial relationships among individual events

(context)

• Allows reconstruction of dynamic application behavior on any required level of

abstraction

• Most general measurement technique

• Profile data can be reconstructed from event traces

• Disadvantages

• Traces can very quickly become extremely large

• Writing events to file at runtime may causes perturbation

TECHNOLOGIES AND THEIR INTEGRATION

SCALASCA

SCORE-P /

 EXTRAE

Optimization

Visual trace

analysis

Automatic

profile & trace

analysis

Debugging,

error & anomaly

detection

Hardware

monitoring

Execution

 VAMPIR PARAVER

PAPI

MUST /

ARCHER

PERISCOPE
KCACHEGRIND

PTF /

RUBIK /

MAQAO

MEMCHECKER /

SPINDLE / SIONLIB

STAT

MAP/PR / MPIP /

O|SS / MAQAO /

LIKWID

DDT

JUBE

EXTRA-P TAU

REMARK: NO SINGLE SOLUTION IS SUFFICIENT!

A combination of different methods, tools and techniques

is typically needed!

SCORE-P AND SCALASCA

SCORE-P

• Infrastructure for instrumentation and performance measurements

• Instrumented application can be used to produce several results:

• Call-path profiling: CUBE4 data format used for data exchange

• Event-based tracing: OTF2 data format used for data exchange

• Supported parallel paradigms:

• Multi-process: MPI, SHMEM

• Thread-parallel: OpenMP, Pthreads

• Accelerator-based: CUDA, OpenCL, OpenACC, ROCm, Kokkos

• Open Source; portable and scalable to all major HPC systems

• Initial project funded by BMBF

• Further developed in multiple 3rd-party funded projects

24

SCORE-P OVERVIEW

Application

Vampir Scalasca TAU

Accelerator-based

parallelism
(CUDA, OpenACC,

OpenCL, ROCm, Kokkos)

 Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Process-level parallelism
(MPI, SHMEM)

Thread-level parallelism
(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording
(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

CUBE

• Parallel program analysis report exploration tools

• Libraries for XML+binary report reading & writing

• Algebra utilities for report processing

• GUI for interactive analysis exploration

• Requires Qt4 ≥4.6 or Qt 5

• Originally developed as part of the Scalasca toolset

• Now available as a separate component

• Can be installed independently of Score-P,
e.g., on laptop or desktop

• Latest release: Cube v4.6 (April 2021)

Call

path

P
ro

p
e
rt

y

Location

ANALYSIS PRESENTATION AND EXPLORATION - CUBE

• Representation of values (severity matrix)

on three hierarchical axes

• Performance property (metric)

• Call path (program location)

• System location (process/thread)

• Three coupled tree browsers

• Cube displays severities

• As value: for precise comparison

• As colour: for easy identification of hotspots

• Inclusive value when closed & exclusive value when expanded

• Customizable via display modes

How is it

distributed across

the processes/threads?

What kind of

performance

metric?

Where is it in the

source code?

In what context?

ANALYSIS PRESENTATION

AUTOMATIC TRACE ANALYSIS

• Idea

• Automatic search for patterns of inefficient behaviour

• Classification of behaviour & quantification of significance

• Identification of delays as root causes of inefficiencies

• Guaranteed to cover the entire event trace

• Quicker than manual/visual trace analysis

• Parallel replay analysis exploits available memory & processors to deliver scalability

29

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

SCALASCA TRACE TOOLS: OBJECTIVE

• Development of a scalable trace-based performance analysis toolset

for the most popular parallel programming paradigms

• Current focus: MPI, OpenMP, and (to a limited extend) POSIX threads

• Specifically targeting large-scale parallel applications

• Demonstrated scalability up to 1.8 million parallel threads

• Of course also works at small/medium scale

• Latest release:

• Scalasca v2.6 coordinated with Score-P v7.0 (April 2021)

SCALASCA TRACE TOOLS: FEATURES

• Open source, 3-clause BSD license

• Fairly portable

• IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX systems,
Linux clusters (x86, Power, ARM), Intel Xeon Phi, ...

• Uses Score-P instrumenter & measurement libraries

• Scalasca v2 core package focuses on trace-based analyses

• Supports common data formats

• Reads event traces in OTF2 format

• Writes analysis reports in CUBE4 format

• Current limitations:

• Unable to handle traces

• with MPI thread level exceeding MPI_THREAD_FUNNELED

• containing Memory events, CUDA/OpenCL device events (kernel, memcpy), SHMEM, or OpenMP
nested parallelism

• PAPI/rusage metrics for trace events are ignored

31

S
c
o
re

-P

Scalasca trace analysis

SCALASCA WORKFLOW

Instr.

target

application

Measurement

library

HWC

Parallel wait-state

search
Wait-state

report

Local event

traces

Summary

report

Optimized measurement configuration

Instrumenter

compiler / linker

Instrumented

executable

Source

modules

R
e

p
o

rt

m
a
n
ip

u
la

ti
o
n

Which problem?
Where in the

program?

Which

process?

• Waiting time caused by a blocking receive operation posted earlier than the corresponding send

• Applies to blocking as well as non-blocking communication

time

lo
c
a
tio

n
 MPI_Recv

MPI_Send

time

lo
c
a

tio
n

 MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

lo
c
a

tio
n

 MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_Isend MPI_Wait MPI_Wait

EXAMPLE: “LATE SENDER” WAIT STATE

EXAMPLE: CRITICAL PATH

• Shows call paths and processes/threads that are responsible for the program’s

wall-clock runtime

• Identifies good optimization candidates and parallelization bottlenecks

time

 Recv

 Recv

lo
c
a

tio
n

 foo

 foo

 foo

 bar

Send

 bar

 bar

Send foobar

 foobar

 foobar

 Recv

 Recv

Computation Communication Wait state Critical path

EXAMPLE: ROOT-CAUSE ANALYSIS

• Classifies wait states into direct and indirect (i.e., caused by other wait states)

• Identifies delays (excess computation/communication) as root causes of wait states

• Attributes wait states as delay costs

time

 Recv

 Recv

lo
c
a

tio
n

 foo

 foo

 foo

Send

Send Recv

 Recv

Computation

Communication

Wait state

Delay

Direct

Direct Indirect

TRACE ANALYSIS REPORT

Additional trace-based

 metrics in metric hierarchy

EVENT TRACE VISUALIZATION WITH VAMPIR

 37

• Visualization of dynamic runtime behaviour at any level of

detail along with statistics and performance metrics

• Alternative and supplement to automatic analysis

• Typical questions that Vampir helps to answer

• What happens in my application execution during a

given time in a given process or thread?

• How do the communication patterns of my application

execute on a real system?

• Are there any imbalances in computation, I/O or

memory usage and how do they affect the parallel

execution of my application?

 Timeline charts

 Application activities and

 communication along a time axis

 Summary charts

 Quantitative results for the currently

selected time interval

VAMPIR DISPLAYS

SCORE-P/CUBE CASE STUDY - HEMELB

10/11/2022 39

HEMELB (SUPERMUC-NG: NO GPUS)

• 3D macroscopic blood flow in human arterial system developed by UC London (UK)

• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions

• exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine

• HemeLB open-source code and test case: www.hemelb.org

• C++ parallelized with MPI [+ CUDA unused]

• Intel Studio 2019u4 compiler and MPI library (v19.0.4.243)

• configured with 2 ‘reader’ processes (intermediate MPI file writing disabled)

• MPI-3 shared-memory model employed within compute nodes
to reduce memory requirements when distributing lattice blocks from reader processes

• Focus of analysis 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry

• 6.4µm lattice resolution (21.15 GiB): 10,154,448,502 lattice sites

• Executed on SuperMUC-NG Lenovo ThinkSystem SD650 (LRZ):

• 2x 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz

• 48 MPI processes/node, 6452 (of 6480) compute nodes: 309,696 MPI processes

• 190x speed-up from 864 cores: 80% scaling efficiency to over 100,000 cores

⇒ Identification & quantification of impact of load balance and its variation

HEMELB@SNG STRONG SCALING OF FOA

RUNSIMULATION

[Execution of 9,216 processes on 192 compute nodes not possible due to insufficient compute nodes with adequate memory in ‘fat’ partition (768 GiB vs. regular 96 GiB node memory]

HEMELB@SNG STRONG SCALING EFFICIENCY OF FOA

RUNSIMULATION

Global scaling efficiency fairly good around 80%, before degrading at larger scales

• Parallel efficiency deteriorating following Load balance efficiency

• Communication efficiency excellent throughout

• Computation scaling (relative to 1152 processes) very good except at largest scale

• Degradation of Instructions scaling partially compensated by improving IPC scaling

[POP CoE scaling efficiency model: www.pop-coe.eu]

INITIAL TREE PRESENTATION: TIME OF MPI_GATHER PER

MPI PROCESS

TOPOLOGICAL PRESENTATION:

STALLS_MEM_ANY FOR HANDLEACTORS

ADVISOR: POP EFFICIENCY ASSESSMENT FOR

RUNSIMULATION

HEMELB (JUWELS-VOLTA)

• 3D macroscopic blood flow in human arterial system developed by UC London (UK)

• lattice-Boltzmann method tracking fluid particles on a lattice grid with complex boundary conditions

• exascale flagship application of EU H2020 HPC Centre of Excellence for Computational Biomedicine

• HemeLB open-source code and test case: www.hemelb.org

• C++ parallelized with MPI + CUDA (in development)

• GCC/8.3.0 compiler, CUDA/10.1.105 and ParaStationMPI/5.4 library

• configured with 2 ‘reader’ processes and intermediate MPI file writing

• rank 0 ‘monitor’ process doesn’t participate in simulation

• Focus of analysis 2,000 time-step (each 100µs) simulation of CBM2019_Arteries_patched geometry

• 1.78 GiB: 66,401,494 lattice sites, 1+38 iolets

• Executed on JUWELS-Volta (@JSC):

• 2x 20-core Intel Xeon Platinum 8168 (‘Skylake’) CPUs + 4 Nvidia V100 ‘Volta’ GPUs

• 4* MPI processes/node (one per GPU), 32 (of 56) compute nodes: 129 MPI processes

⇒ Identification & quantification of impact of load balance and its variation

TREE: TIME FOR ASYNCH. CUDA KERNELS ON

SEPARATE CUDA STREAMS

TOPO: TIME FOR ASYNCH. CUDA KERNELS ON

SEPARATE CUDA STREAMS

TOPO: TIME FOR MPI FILE WRITING ON CPU

VARIES PER MPI PROCESS

TOPO: TIME FOR CUDA ASYNCHRONOUS MEMORY

COPIES IS IMBALANCED

HEMELB@JUWELS-VOLTA STRONG SCALING OF

FOA RUNSIMULATION
• Reference execution with 8ppn

• multiple processes offloading GPU
kernels generally unproductive

• Comparison of versions (4ppn)

• v1.20a generally better

• Synchronous MPI file writing
is the primary bottleneck

• CUDA kernels on GPUs

• less than half of Simulation time
(therefore GPUs mostly idle)

• total kernel time scales very well
(0.93 scaling efficiency)

• load balance deteriorates
(0.95 for single node,
0.50 for 32 nodes)

HEMELB@JUWELS/VOLTA STRONG SCALING

EFFICIENCY OF RUNSIMULATION

Only considering GPUs (ignoring all CPU cores, 90% of which are completely unused)

• Single (quad-GPU) node already suffers significant communication inefficiency

• includes MPI file writing, but doesn’t degrade much as additional nodes are included

• Load balance of GPUs deteriorates progressively

• GPU computation scaling remains reasonably good

[POP CoE scaling efficiency model: www.pop-coe.eu]

HEMELB@JUWELS-VOLTA STRONG SCALING OF FOA

RUNSIMULATION

• CPU+GPU time breakdown

• CUDA kernels on GPUs

• less than half of Simulation time
(therefore GPUs mostly idle)

• total kernel time scales very well (0.87
scaling efficiency)

• MPI processes on CPUs

• computation time decreases

• CUDA synchronization time fairly
constant, but time for memory
management increases somewhat

• MPI communication time dominates,
with much more time for file writing
with 16+ nodes

SCALASCA CASE STUDY – TEA LEAF

28/04/2015 54

CASE STUDY: TEALEAF

• HPC mini-app developed by the UK Mini-App Consortium

• Solves the linear 2D heat conduction equation on a spatially decomposed regular grid

using a 5 point stencil with implicit solvers

• Part of the Mantevo 3.0 suite

• Available on GitHub: https://uk-mac.github.io/TeaLeaf/

• Measurements of TeaLeaf reference v1.0 taken on Jureca cluster @ JSC

• Using Intel 19.0.3 compilers, Intel MPI 2019.3, Score-P 5.0, and Scalasca 2.5

• Run configuration

• 8 MPI ranks with 12 OpenMP threads each

• Distributed across 4 compute nodes (2 ranks per node)

• Test problem “5”: 4000 × 4000 cells, CG solver

SCALASCA ANALYSIS REPORT

EXPLORATION (OPENING VIEW)

Additional top-level

metrics produced by the

trace analysis…

SCALASCA WAIT-STATE METRICS

…plus additional wait-

state metrics as part of

the “Time” hierarchy

TEALEAF SCALASCA REPORT ANALYSIS (I)

While MPI

communication time

and wait states are

small (~0.6% of the total

execution time)…

TEALEAF SCALASCA REPORT ANALYSIS (II)

…they directly cause a

significant amount of

the OpenMP thread

idleness

TEALEAF SCALASCA REPORT ANALYSIS

(III)

The “Wait at NxN”

collective wait states

are mostly caused by
the first 2 OpenMP do

loops of the solver (on

ranks 5 & 1, resp.)…

TEALEAF SCALASCA REPORT ANALYSIS

(IV)

…while the MPI point-

to-point wait states are

caused by the 3rd solver
do loop (on rank 1) and

two loops in the halo

exchange

TEALEAF SCALASCA REPORT ANALYSIS (V)

Various OpenMP do

loops (incl. the solver

loops) also cause

OpenMP thread

idleness on other ranks

via propagation

TEALEAF SCALASCA REPORT ANALYSIS

(VI)

The Critical Path also

highlights the three

solver loops…

TEALEAF SCALASCA REPORT ANALYSIS

(VII)

…with imbalance (time

on critical path above

average) mostly in the

first two loops and MPI

communication

TEALEAF SCALASCA REPORT ANALYSIS

(VIII)

Computation time of

1st…

TEALEAF SCALASCA REPORT ANALYSIS

(IX)

…and 2nd do loop

mostly balanced within

each rank, but vary

considerably across

ranks…

TEALEAF SCALASCA REPORT ANALYSIS (X)

…while the 3rd do loop

also shows imbalance

within each rank

TEALEAF ANALYSIS SUMMARY

• The first two OpenMP do loops of the solver are well balanced within a rank,
but are imbalanced across ranks

 Requires a global load balancing strategy

• The third OpenMP do loop, however, is imbalanced within ranks,

• causing direct “Wait at OpenMP Barrier” wait states,

• which cause indirect MPI point-to-point wait states,

• which in turn cause OpenMP thread idleness

 Low-hanging fruit

• Adding a SCHEDULE(guided) clause reduced

• the MPI point-to-point wait states by ~66%

• the MPI collective wait states by ~50%

• the OpenMP “Wait at Barrier” wait states by ~55%

• the OpenMP thread idleness by ~11%

 Overall runtime (wall-clock) reduction by ~5%

SUMMARY

TAKE AWAY MESSAGES

• Many performance analysis tools exist - for a reason

• Different measurment and analysis techniques

• Instrumentation vs. Sampling

• Profiling vs. Tracing

• Different hardware support

• Vendor specific tools, e.g. NVIDIA NSIGHT COMPUTE, Intel VTune

• Verndor agnostic tools, e.g. Score-P ecosystem, TAU, HPCToolkit

• Tools don‘t automagically increase performance

• Performance analysis is a daunting task, requires experience

• Performance tuning requires domain and architecture knowledge

 Successful performance engineering often is a collaborative effort

